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Abstract 
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem 
cell response. Such an approach is recently being established to guide stem cell 
differentiation through osteogenesis/neurogenesis/cardio myogenesis.  

Despite significant recent efforts, the biophysical mechanisms by which stem cells 
sense, interpret and transform electrical cues into biochemical and biological signals 
still remain unclear. The present review critically analyses the variety of EF stimulation 
approaches that can be employed to evoke appropriate stem cell response and also 
makes an attempt to summarize the underlying concepts of this notion, placing special 
emphasis on stem cell-based tissue engineering and regenerative medicine. 

This review also discusses the major signaling pathways and cellular responses that 
are elicited by electric stimulation, including the participation of reactive oxygen species 
and heat shock proteins, modulation of intracellular calcium ion 
concentration, ATP production and numerous other events involving the clustering or 
reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific 
advantages of using external electric stimulation in different modalities to regulate stem 
cell fate processes are highlighted with explicit examples, in vitro and in vivo. 
 

 

 

 

 

 

 

 

Graphical abstract 
The effect of EF in regulating the expression of a wide panel of genes that are involved in the process 
of stem cell migration, and functional differentiation towards angiogenic, neurogenic, cardiomyogenic 
and osteogenic lineage. 
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1. Introduction 
It is well known that nerve, muscle and glandular tissues make use of endogenous electric fields (EF) 
to transmit electric signals/impulses [1], [2]. It is also well established that endogenously generated 
bioelectric currents play a critical role in important biological processes including embryogenesis, 
wound healing, tissue repair and remodeling as well as normal growth of organisms [3]. Endogenous 
EF exists in both the cytoplasm and extracellular space. Such EF can vary in strength from as small 
as a few mV/mm to hundreds of mV/mm [4]. It may be noted that electric stimulation of cells has been 
in practice for quite some time now. In clinical settings too, EF treatment is being extensively used, 
especially to revive the damaged or disabled tissues in the neuromuscular system (CNS – brain and 
spinal cord; PNS – sensory and motor neurons) as well as to accelerate healing of injured 
musculoskeletal tissues such as bone, ligament and articular cartilage. Taken together, such 
biophysical mechanisms suppress the progression of bone diseases like osteoarthritis and 
osteonecrosis [5], [6], [7]. Furthermore, EF is being proposed as a viable therapeutic option to 
minimize pain, to overcome tissue malfunction/impairment, to reduce muscle spasm, and to promote 
overall tissue/organ function [8]. Similarly, direct deep brain stimulation is reported to be beneficial in 
treating Parkinson’s disease, by ameliorating symptoms through stimulation of basal ganglia [9]. 
The treatment of biological systems/cells with EF can evoke favorable biochemical and physiological 
responses, provided that the exposure duration and EF strength are within tolerance limits [10]. 
However, the predominant mechanism of EF interaction with biological systems still remains a 
mystery. Nevertheless, the biophysical changes upon EF exposure can be triggered at the cell 
surface, affecting membrane protein functions like enzyme activity (Na+/K+ATPase and 
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Ca2+ ATPases), membrane-receptor complexes and ion-transporting channels by altering the charge 
distribution (i.e. the conformation) on these biomolecules (Fig. 1)[11], [12]. Often, it is believed that a 
similarity exists in the signaling pathways triggered by mechanical stress and electric field [13]. 
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Fig. 1. Bioelectrical control mechanisms at cellular level (clock-wise): Electric field (EF)modulates 
levels of intracellular calcium, a secondary messenger that drives numerous cellular processes 
and signaling cascades that govern proliferation and differentiation of stem cells. Endogenous EF 
guided embryogenesis implicates the key role of integrin receptors, a group of transmembrane linkers 
of the cell membrane to the extracellular matrix (ECM). The integrin receptor conformation is sensitive 
to alterations in membrane potential, thus affecting differentiation. Tumor treating oscillating EFs 
induce cell apoptosisvia plasma membrane depolarization. Numerous cell surface receptors (CSRs) 
such as epidermal growthfactor-like receptor (EGFR) undergo redistribution on the cell surface under 
the influence of an applied EF. This leads to a preferential alignment of the cell axis and orientation 
of cell division planes during mitosis. The import of morphogens and neurotransmitters through 
longitudinal gap junctions driven by electrophoretic mechanisms as in embryonic morphogenesis to 
the three germ layers is central to the migration of stem cells. Electrotaxis/galvanotaxis of cells occurs 
by reorganization of the cytoskeletalstructures such as tubulin and actin microfilaments, wherein actin 
nucleation and polymerization is induced in the direction of the applied EF by actin-related protein 
(ARP2/3) complex. Adapted from Ref. [18] Copyright © 1999, FASEB Journal. 

In order to realize the underlying phenomenon at the cellular level, one needs to determine first, 
whether the electric field exerts its effect directly on the cell or indirectly through alterations of 
physical or chemical factors in the extracellular environment. There are three probable lines of action 
by which external EF can exert its effect. a) The EF may act intracellularly by influencing the 
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movement and concentration profiles of charged cytoplasmic molecules [14]. b) It may perturb 
the transmembrane potential (TMP) that can alter the membrane responses and can activate 
growth-regulating ion transport across the plasma membrane [15]. c) It may also act along the plasma 
membrane, causing an electrophoretic accumulation of surface molecules or by modulating the 
conformational states of membrane proteins [16]. Such conformational changes are mainly induced 
by the interactions of protein dipole moments with electrically modulated membrane potentials [17]. 
The motivation for this review is to inspect various established approaches for the 
electro-manipulation of stem cells, in particular reference to the predominant mechanisms guiding 
stem cell response. Though such molecular mechanisms of EF interaction with stem cells are not 
explicitly understood, some compelling arguments are presented in the subsequent sections to 
explain the effects observed in vitro. The major objective of this review is to bring forth to the tissue 
engineering community, the need for a detailed investigation of the molecular mechanisms of EF 
stimulation of stem cells, which would eventually provide a rational starting point for future pre-clinical 
and clinical studies. 
 
In this review, the different facets of electrical stimulation in the context of guiding stem cell fate and 
function are discussed. This review encompasses the physiological origin of endogenous bioelectric 
fields and the experimental approaches to simulate endogenous electrical signals by exogenous EF 
stimulation. Furthermore, the modulation of stem cell proliferation, migration and differentiation to 
multiple lineages (osteogenic, neurogenic, cardiomyogenic and angiogenic) by manipulating EF 
stimulation parameters are exemplified. Also, a critical analysis of the possible mechanisms of EF 
dictated stem cell response such as biochemical signaling 
pathways, calcium transients, cytoskeletal reorganization, ATP synthesis, reactive oxygen species 
and heat shock proteins is provided. Finally, the utility of exogenous EF for deep brain 
stimulation, cardiac pacing and defibrillation, in vivo is illustrated. 
2. Endogenous vs exogenous EF 
Endogenous EFs are considered to be essential for maintaining cellular homeostasis and are invoked 
in many biological events, from embryonic development to healing of the wounded tissues. EFs of 
detectable magnitude have been reported to occur in tissues and embryos of different origin, such as 
in Xenopus, chicken, and mouse [19]. Endogenous EF of around 20 mV/mm were measured in a 2–4 
days old chick embryos and disruption of such field affected tail development structures. A similar EF 
was recorded in axolotl embryo, interference of which caused developmental abnormalities 
during neurulation, but not gastrulation [20]. Such examples highlight the importance of endogenous 
EF during embryo development. From the regeneration point of view, studies in 
cultured Xenopus embryonic neurons indicated striking orientational effects in such a way that, 
applied EFs induced neurite sprouting and promoted the turning of the growth cones of extending 
neurons [21]. Hinkle et al. demonstrated that a low strength EF can induce amphibian neurite growth 
towards the negative pole, in vitro as well as control the bipolar orientation axis of developing muscle 
cells from spherical myoblasts [22]. Further, in the context of endogenous EF for wound healing and 
tissue regeneration, pharmacologically manipulated endogenous EF generated from rat corneal 
wounds regulated the orientation and frequency of cell division testifying the role of wound induced 
EF in tissue defect healing [23]. All these published reports testify the role of endogenous EF on 
healing of tissue defects. Based on these groundbreaking observations, the devices generating 
pulsed electromagnetic fields have been approved by the FDA [24]. In a landmark study, Borgens 
et al. detected changes in current pattern and density at the dissected bone site, while steady ionic 
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(electric) current was recorded away from bone defects created in the metatarsals of weanling mice. 
The observed “fracture currents” decayed depending on the extent of bone injury and they were 
distinct from the stable persistent current in the healthy bone, which were driven majorly by chloride 
ions and to a minor extent by sodium, magnesium, and calcium ions [25]. The biological role of 
endogenous EF has also been implicated in long-range protein interactions, in electron transfers of 
chemical reactions and consequently influencing chemical reaction kinetics in diseased cell state 
such as cancer and in intercellular interactions [26]. 
Exogenous EFs are non-endogenous bioelectric fields, generated from external power sources and 
typically applied to biological cells/tissues via electrodes. Currently, different kinds of electrical 
stimulation modalities are being applied in several experiments, in vitro. These include direct current 
(DCEF), pulsed (PEF), alternating current electric field (AC EF), oscillating magnetic flux induced 
electrical stimulation and so on. Of them, DCEFs have gained significant attention among biomedical 
scientists and engineers, mainly for in vitrostimulation studies, as it can alter the migration and cell 
shape, apart from influencing the viability and proliferation of numerous cell types [27]. Also, there are 
other ways of treating cells with EF such as capacitive coupling (CC) and inductive coupling (IC). 
Each of them will be briefly described in this section along with some of the commercially available 
electrical stimulators. Usually, in vitro DC EF setups are constructed from petri dishes or cell 
chambers with conductive electrodes (e.g. graphite, platinum wires or stainless steel) being placed 
directly in culture medium (Fig. 2) [28]. Moreover, the electrodes can locally deliver the applied 
current between the anode and cathode accurately along a specified direction [29]. Another 
experimental set up to apply EF to the cells or tissues is to custom-design an isolated chamber 
connected via agar salt bridges to external Ag/AgCl electrodes immersed in Steinberg’s solution 
(Fig. 2). Such a configuration can isolate the EF exposed cells from reactive faradaic products of 
electrolysis (hydrogen peroxide, hydroxyl and superoxide ions, or other free radical intermediates) 
generated due to the redox reactions occurring at the electrode-electrolyte interface [30]. In addition, 
the adsorption of proteins on the electrodes leads to a reduction in the magnitude of the electrical 
stimulus. This occurs because the flow of electrons or current is impeded by the adsorbed proteins 
and this eventually limits the effectiveness of DCEF [31]. On the other hand, capacitive coupling (CC) 
and inductive coupling (IC) (Fig. 2) are non-invasive ways of exposing cells to EF. CC devices consist 
of two parallel disc-electrodes coupled to the culture, with the lower electrode placed at the bottom of 
the culture dish and the upper electrode placed above the medium, leaving an intermediate air 
gap [32]. The electrical stimulation occurs through the induced EF, mediated by the transfer of 
electrical energy from the capacitor plate to the targeted cell monolayer [33]. In IC technique, an EF is 
induced perpendicular to the axis of a time-varying magnetic field caused by a change in current flow 
through a coil of wire or solenoid [34]. The induced voltage/electric field parameters are governed by 
Faraday’s induction law and depend on the frequency characteristics of the applied magnetic field 
and the impedance characteristics of a cell or a biological system [35]. However, the observed 
cellular effects in such cases are a superposition of both electric and magnetic fields. To address this 
concern, Hess et al. developed a culture platform based on transformer-like coupling principle, to 
apply EF without any interference from magnetic field to direct osteogenic differentiation in 
human mesenchymal stem cells (hMSCs) [36]. 
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Fig. 2. Schematic representation showing various approaches for EF application in in vitro cultures – 
(A) Direct current (DC) stimulation utilizes two parallel electrodes coupled directly by immersion into 
the culture medium and connected to a power source; (B) Inductive coupling (IC) creates EF from 
oscillating electromagnetic fields generated by passing alternating currents through a pair of 
Helmholtz coils; (C) Capacitive coupling (CC) produces EF by using two metallic/conducting plates 
placed above and below the cell culture dishes without contact with the culture medium, while (D) one 
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of the plates (usually the top plate) is immersed into the culture medium in the case of 
semi-capacitive coupling; (E) In the agar salt bridge configuration, the electrodes are immersed 
in electrolytes in separate chambers and connected to the cell culture dish through an agar salt 
bridge for maintaining EF. 

It is often challenging to apply EFs to monolayer cultures, 3D cultures, tissue engineered constructs 
or embryos, especially during the long term culture experiments. In some cases, such long duration 
high throughput experiments demand bulky circuits connected with multiple wires running into and out 
of the incubators. In order to address these challenges, miniaturized stimulation device consisting of 
circuit layouts on minute electrical boards and 3D-printed cell culture chambers with on-board 
integrated circuits (ICs) and biocompatible cell arrays were proposed, so as to examine the effects of 
different stimulation parameters on cell behavior [28]. 
 
It is also worthwhile to emphasize the disadvantages of using electronic circuits with fixed 
resistances/impedances, as the intrinsic impedance of cells and the cell medium can change as a 
result of EF induced cellular responses. Rather, such studies require variable voltage or current 
outputs that can compensate for the fluctuations in biological responses. Often, arbitrary choice of EF 
parameters leads to incomplete knowledge of the fundamental pathways that mediate EF interactions 
with cells. Thus, for the correct interpretation of the studies, a thorough optimization of electrical 
stimulation parameters, such as field strength, time duration and frequency, would be required so 
that, the cell can bypass through its initial, passive state to reach the threshold level for active 
response [37], [38]. Notably, since the cells are electrically shielded by the cell membrane, the extent 
of shielding is frequency dependent in an alternating field and depends on the rise time and pulse 
duration [10]. 
 
A number of electrical stimulation set ups and devices are commercially available 
for in vitroand in vivo studies, respectively [39]. Mobini et al. used DC electrical stimulation chambers 
with L-shaped Platinum (Pt) electrodes fixed onto the lid of standard 6-well plates dipping into the 
culture wells [40]. Using this set up, DCEF of 100 mV/mm was applied to rat adipose-derived 
mesenchymal stem cell cultures to elicit osteogenic differentiation over 1 week in culture. In another 
study, a 24-well plate flanked by capacitor circuitry on electrical boards was used to elicit the 
synchronous contraction of C2C12 skeletal muscle cells [41]. Such a setup also contains 
semi-circular platinum electrodes, immersed into the culture medium with end electrodes connected 
to the electrical boards. Another commercially available electrical stimulation device for chronic EF 
stimulation is the C-Pace EP Culture Pacer by IonOptix. It is a multi-channel biphasic EF stimulator 
with output voltages of 0–40 V, 0.01–100 Hz and pulse duration of 0.4–24 ms. This set up has been 
applied predominantly for promoting contractile activity and external pacing of cardiomyocytes in 2D 
as well as 3D cultures [42]. In parallel to the C-Pace EP stimulator, Xiong et al. custom designed a 
miniaturized single channel electrical stimulation set up, which can accommodate multi-well plates 
within the stimulation board and provides a greater variation in the frequency and pulse wave 
forms [28]. For pre-clinical studies, the implantable EF stimulators are enclosed in a hermetic seal or 
epoxy resin to avoid electrochemical reactionswith the body fluids. These devices/modalities are 
discussed in a later section on in vivoeffects of electrical stimulation, including deep brain stimulation 
and cardiac pacing. 
The choice of electrode material is a crucial parameter that can influence the therapeutic efficacy of 
electrical stimulation in biological tissues. By using electrodes for ES, one can have a local control on 
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the magnitude of the electrical field. Most of the electrodes create and inject/transfer charge through 
the production of electrons by oxidation at the anode. However, in physiological systems electrical 
charges are transported via ions present in the electrolyte. In an electrochemical cell, charge transfer 
from electrons to ions occurs at the electrode–electrolyte interface via Faradic or Non-faradic 
electrochemical reactions and the formation of capacitive electrical double-layers. The 
charge-injection mechanism is dependent on the nature of electrode material, electrolyte and electric 
potentials at the electrodes. For both in vitro and in vivo stimulation experiments, the electrode 
material has to be chosen in such a way that it has acceptable biocompatibility without inducing the 
irreversible Faradaic corrosion reactions in the culture medium during ES [43]. Based on the chemical 
nature of the electrode, there exists an intrinsic charge injection limit, which determines the voltage 
output at the electrode surface. Beyond this threshold voltage, irreversible electrolysis of water 
occurs, which can lead to cellular damage by the dissolution of electrode material, pH variation and 
generation of undesirable reactive chemical species as well as alteration of cellular metabolic rates 
caused by Joule’s heating [44]. The choice of a potential electrode material varies, depending on its 
use. Notwithstanding, electrode materials with low impedance, high charge injection capacity, large 
reversible charge transfer and long term stability are highly desired to achieve effective and safe 
electrical stimulation [45]. To this point in literature, different strategies are applied to limit the 
corrosion rate, such as cathode and anode protection by the formation of passivation layers and 
barrier coatings over the electrode surfaces. Conducting polymers, such 
as polypyrrole(PPy), polyaniline (PANI) and polythiopene (PT) are being used in recent years as 
corrosion protective coatings for iron/steel [46]. Another issue is that charge injection is directly 
proportional to the electrode area. Therefore, lower the electrode area, lesser is the charge injection 
leading to undesirable greater electrode impedance. This can be overcome by roughening the 
electrode material, which increases the real surface area, without modifying the geometrical surface 
area of the electrode [47]. 
Currently, a number of materials are being used for fabricating biomedical electrodes for in vitro, 
pre-clinical and clinical experiments, namely Carbon (Graphite rods), Platinum (Pt), Iridium (Ir), Gold 
(Au), Titanium (Ti), Tungsten (W), platinum-iridium alloys, and titanium nitride, 
Stainless steel (SS), Indium Tin Oxide (ITO) etc [48]. Among them, Pt is the preferred electrode 
material for in vitro cell stimulation, neuroprostheses, cochlear implants, deep brain stimulation 
and retinal implants. This is due to its electrochemical stability, inertness and corrosion resistance, 
leading to its limited reactivity in biological environments. However, for in vivo applications, Pt is 
alloyed with Iridium to make the electrodes mechanically strong and implantable deep into the tissue 
for EF stimulation. Likewise, 316 LVM stainless steel is also commonly used as it has less likelihood 
of mechanical failure [49]. Even though Au and Pt are more resistant to corrosion than stainless steel, 
they are more prone to mechanical failure. However, during ES, the chromium oxide barrier layer in 
stainless steel can form cracks, allowing the oxidation of the iron underneath, resulting in electrode 
decomposition. Thus, for very long duration or high intensity stimulation protocols, the use of platinum 
or platinum-iridium electrodes would be preferred [50]. Despite having a lower polarization resistance 
(Rp, the electrode resistance to chemical reaction) than titanium and titanium electrodes, only SS can 
maintain constant current over 90 s of ES, while the polarization of the culture medium and the 
shielding of charges occurs on Ti and TiN electrode (highly resistant to Faradaic reactions) [4]. It was 
observed that highly capacitative and corrosion resistive carbon electrodes had the best charge 
injection and transfer features for use in electric stimulation of cardiac and neuronal cells [51], [52]. 
However, the graphitic carbon rods suffer from poor mechanical strength and protein adsorption, that 
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disrupt the uniformity of EF intensity over time in culture [51]. This necessitates the cleaning of the 
electrodes between successive stimulation protocols. Lately, standard corrosive electrode materials 
are being replaced by non-metallic, biocompatible and electroconductive materials [53]. With organic 
conducting polymers, the charge transfer capacity along with their polymeric nature enables a greater 
affinity and connection with biological systems [54]. Recently, carbon nanotube (CNT) surfaces have 
been widely investigated as effective electrodes for neural interfaces, owing to their phenomenal 
properties such as large surface area, high electrical conductivity and mechanical toughness as well 
as excellent charge injection ability and decreased interfacial electrode impedance, along with their 
capability to support neuronal adhesion and growth [55]. 
 
Altogether, scientific investigations over the years have explored several promising materials to 
benefit the challenging requirement of ES both in vitro and in vivo. Although apparent, the electrode 
materials must possess better mechanical properties and higher charge injection capacity for EF 
stimulation in vivo. In comparison to EF stimulation of cell monolayers, electrodes are prone to 
mechanical failure or bending during insertion into tissues as well as the larger reduction in charge 
injection capacity in vivo compared to in vitro EF stimulation [56]. The advent of micro 
and nanofabrication technology has opened up countless opportunities to produce novel electrode 
systems ranging from ultra flexible transparent electrodes, micro/Nano needle 
electrodes, microelectrode arrays, metal nanomesh electrodes, nanowires, patterned metal grids and 
so on [57], [58], [59]. Table 1 presents a list of electrode materials that are currently in use 
for in vitro and in vivo stimulation of cells and tissues, respectively. A brief survey of the electrode 
materials revealed that most of the pristine metal or single element electrodes suffer from mechanical 
failure limiting their application for chronic and deep tissue stimulation, in vivo. Also, the corrosion 
resistance of alloys and metallic electrodes results from the formation of a surface 
passivation protective layer. 
 

 

 

 

Table 1. Electrodes for electrical stimulation of cells and tissues. 

 

Electrode 
material 

Cells/Tissue 
stimulated 

Advantages Disadvantages Reference 

Carbon rods 2D and 3D cultures of 
cardiac cells 

High current injection 
efficiency; Can be applied 
for 2D and 3D culture 
stimulation in bioreactors 

Poor mechanical strength; Protein 
adsorption on carbon electrodes 
can affect the uniformity of EF 

Tandon 
et al., 
2006 [51] 
Tandon 
et al., 
2009 [60] 

Carbon film 2D cultures of 
neuroblastoma and 
Schwann Cells 

Porous carbon film can be 
simultaneously used as 
substrate for cell culture as 
well as electrode for vertical 
EF stimulation 

Fragile in nature Jain et al., 
2013 [52] 
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Platinum 
(Pt) 

2D and 3D cultures of 
C2C12 muscle cells 

Highly inert, preferred for 
chronic stimulation; Can 
generate reproducible and 
uniform EF 

High cost and poor mechanical 
stability 

Ahadian 
et al., 
2012 [61] 

Platinum-Iri
dium (Pt-Ir) 
alloys 

Deep brain stimulation 
and extracochlear 
implants 

Alloying Pt with Ir improves 
charge carrying capacity and 
mechanical robustness for 
deep tissue stimulation 

Fabrication by electrodeposition 
is costly and time-consuming; 
Non-uniform coatings 

Ison et al., 
1987 [62] 
Petrossians 
et al., 
2016 [63] 

Gold 3D cultures of 
Cardiomyocytes 

Array of gold electrodes 
deposited on epoxy resin for 
cardiac stimulation; 
Non-toxic and non-reactive 
at low voltages 

More corrosive than Pt; 
Mechanically weak necessitating 
alloying with other metals and 
cost ineffective 

Radisic M. 
2016 [64] 
Blume et al., 
2013 [65] 

Titanium; 
titanium 
nitride 

Cardiomyocytes in 
Matrigel scaffolds 

Unreactive for moderate 
voltages, mechanically strong 
and biocompatible 

Low charge injection efficiency; 
Can corrode under prolonged 
usage 

Tandon 
et al., 
2011 [66] 

Tungsten Brain stimulation Preferred for deep tissue 
stimulation; Non-reactive 
during DC stimulation due to 
surface passivation oxide 
layer 

Undergoes dissolution during 
pulsed stimulation; Not suitable 
for chronic stimulation 

Tehovnik 
EJ. 
1996 [67] 
Stevenson 
et al., 
2010 [50] 

Tantalum Pacemaker electrodes Ta is corrosion resistant due 
to Ta2O5 passivation layer 
formed on Ta surface; Can be 
safely used even as anode 

Rarely used as alloying agent as 
it imparts brittleness to other 
metals except steel 

Levine et al., 
2006 [68] 
Johnson 
et al., 
1977 [69] 

Nichrome Peripheral nerve 
stimulation and 
recording 

Nichrome wire braids have 
good mechanical strength 
and biocompatibiity 

Chronic stimulation can pose 
toxicity from the leaching of Ni 
and Cr 

Jellema 
et al., 
1995 [70] 
Kim et al., 
2013 [71] 

Nitinol Endovascular neural 
interfaces 

Being a shape memory alloy, 
it can be used to penetrate the 
blood brain barrier and 
record neural signals 

Dissolution of Ni from nitinol can 
cause potential toxicity to tissues 

Wong et al., 
2016 [72] 

Stainless 
steel (316L) 

Endocrine glands in 
rats and mouse 
embryonic stem cells; 
2D culture of hMSCs 

Mechanically strong and 
electrode surface is protected 
by a passive iron oxide layer 

Dissolution of iron at high 
positive voltages can lead to ROS 
generation and toxicity; This 
limits the usage of stainless steel 
for neural stimulation and 
prostheses 

3. Effects of EF on stem cell niches 
Stem cells are the most promising candidates in the field of tissue engineering and regenerative 
medicine due to their ability to regenerate and repair damaged tissues at the sites of injury [83]. Stem 
cells exhibit characteristic features such as high proliferative capacity (in an undifferentiated state) 
and the potential to differentiate along one or more lineages under appropriate culture conditions. 
They are found in a complex and dynamic microenvironment called niche, which comprises of 
supportive cells as well as components of the extracellular matrix arranged in a three-dimensional 
topography [84]. Stem cell niche dictates the fate of stem cells through unique signaling environment 
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imposed by modulating the matrix stiffness, by presenting immobilized signaling molecules in a 
defined manner, by establishing cell-cell contact, by the creation of cytokine gradients and also 
through multitude of other physical factors, such as fluid shear and mechanical stress, partial 
pressure of oxygen and temperature during culture [85], [86]. When a stem cell undergoes division in 
a complex physiochemical environment, each new daughter cell can choose to either remain a stem 
cell or become a functionally specialized cell such as a muscle cell, a bone cell, or a brain cell [87]. 
As stem cell activation, homing and differentiation are central to tissue development, homeostasis 
and repair, the niche preserves the cells in a quiescent and metabolically less active state to 
replenish them and balance their availability and migration towards sites of injury [88]. A series of 
different factors play important roles in stem cell fate decisions. Understanding the harmony in the 
spatial and temporal interaction of signals from the matrix microenvironment is an essential 
prerequisite for the application of stem cells in regenerative medicine to create desired complex, 
functional tissues. By precisely tuning some of the physical factors, such as ECM geometry, 
topography, elasticity, electrical or mechanical and biochemical signals, localized stem cell 
differentiation can be achieved, without the use of potentially toxic biochemical reagents or soluble 
factors. 
As it is well known that endogenous EFs can stimulate tissue regeneration and that electric fields 
induce stem cell recruitment to the wound site, evidences suggest that local electric fields greatly 
influence stem cell fate [89]. Thus, regardless of the various strategies that are at work to activate 
stem cell function for tissue formation/remodeling, EF has tremendous significance in stem cell 
therapeutics to maintain, regenerate, or heal tissues [90], [91]. It is well known that stem cell behavior 
is regulated by the anatomical, physiological and functional microenvironment known as niche that 
they reside in. Such cellular environment constitutes the niche around stem cells. Similarly, stem cell 
recruitment to the wound site is regulated by local endogenous electric fields. This is hypothesized to 
constitute the electrical niche that enables stem cell dictated wound healing [92]. The electrical 
component of stem cell niche can affect membrane depolarization leading to plasticity of stem cells 
by alteration of the membrane voltage. Bioelectric signaling prevailed over biochemical signaling as 
illustrated by the transdifferentiation or increase in the stemness of hMSC 
derived adipocytes and osteoblasts upon membrane depolarization by Na+/K+ ATPase inhibitor [93]. 
Thus, the electrical niche around stem cells can significantly enhance their plasticity and guide 
differentiation to various lineages. Based on the electrophysiology of the different body tissues, it is 
also possible to manipulate stem cell differentiation towards specific lineage by mimicking the 
electrical conductivity and electrical activity of the tissue in question. Also, the exogenous stimulation 
protocols must be designed to have a close resemblance to endogenous electrical currents and fields 
in the native tissue. For instance, pulsatile electrical stimulation of biowires embedded in 
3D hydrogel matrix was shown to induce maturation of stem cell derived cardiomyocytes in a 
frequency dependent manner, as evident from the phenotypic expression of contractile proteins, 
electrophysiology and calcium oscillations [94]. The following sections are intended to further 
exemplify the distinct effects of EF exposure on stem cells, based on their self-renewal (i.e., 
sustained replicating capacity), motility (i.e., migration), and multipotency (i.e., capacity to differentiate 
into multiple cell types). A detailed account of the EF stimulation effects on stem cell proliferation, 
migration and differentiation to multiple lineages along with the mechanisms of stem cell activation by 
exogenous EF are presented in the following sections. 

3.1. Stem cell proliferation 
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The ES effects on cell proliferation are widely reported and it includes both inhibitory and stimulating 
effects, depending on the cell type and exposure conditions [95]. In several instances in vivo, cell 
divisions occur in the presence of DC physiological endogenous EF, such as, 
during morphogenesis of mammalian embryo, wound healing, or tumor formation. Similarly, a dose 
dependent increase in proliferation was observed in in vitro cultures, for various cell types (HL-60 
leukemia cells, Rat-1 fibroblasts and WI-38 diploid fibroblasts) exposed to low frequency EF [96]. 
Under identical exposure conditions, unexpected DNAstrand breaks in later hours were noticed 
suggesting that the EF exposure caused a temporary mitogenic effect, followed by a loss of DNA 
integrity. Hence, this study is an apt example validating from a pathogenic view point, that short-term 
exposures (<12 h) induce growth stimulation whereas prolonged exposures (>24 h) impede the 
advancement of the cell cycle by causing DNA damage [96]. Thus, exposing cells to EF for shorter 
duration is a viable option to harness its utility to enhance proliferation and differentiation. 
In contradiction to the study by Wolf et al. [97], another group came up with the inhibitory effects of 
intermediate frequency AC fields, termed as tumor treating fields (TT Fields) in preventing 
cancerous cell growth, in vitro and in vivo[98]. In a study aimed at promoting proliferation of ASCs, a 
448 kHz EF stimulus, which is currently used in electrothermal capacitive-resistive electric transfer 
therapies, could activate proliferation without compromising the multipotentiality of ASCs to 
subsequently differentiate towards adipogenic, chondrogenic or osteogenic lineage [99]. In the same 
way, numerous reports in literature validate the effect of EF in prompting higher proliferation rates in 
adult stem/progenitor cells, though the exposure parameters and treatment protocols (intensity, type 
of EF, pulse duration, exposure time) were different in these 
experiments [82], [100], [101], [102], [103], [104], [105]. In fact, to illustrate the varying effects of 
different forms of ES on proliferation, Griffin et al. exposed hMSCs to DC, capacitive coupling (CC), 
pulsed electromagnetic field (PEMF) and degenerate wave (DW) EF [106]. It was observed that DW 
led to maximum cell proliferation and minimal apoptotic cell death and other cytotoxic effects relative 
to other waveforms [105]. The functional electrical stimulation treatment of neural stem cells (NSCs) 
enhanced the production of EGF/bFGF and these growth factors subsequently exerted their effects 
on NSC proliferation [107]. 
Although, the conventional biochemical factor based strategies certainly predominate in effectively 
controlling cell growth, these soluble factors supplemented in the culture medium have shortcomings 
in terms of the quality, source, concentration of the utilized factors, localized delivery and so on [108]. 
As a result, recent studies advocate the combinatorial strategy of coordinating well-defined 
interactions between physical and biochemical cues to influence the cell fate determination [85]. One 
possible explanation for the enhanced proliferation is the augmented convection of nutrients and 
soluble factors by electrokinetically driven flow [109]. The applied EF can enhance the effective mass 
transport by either electrophoresis or electroosmosis. Under an applied EF, both these phenomena 
can aid in convection based transport of both charged and uncharged molecules. Moreover, EF 
causes a variety of proteins to re-distribute asymmetrically, which in turn plays a critical role in 
determining the level of symmetry and orientation during cell division [23]. Unlike the randomly 
oriented cleavage plane of dividing cells in unstimulated cells, ES causes preferential alignment most 
often around 90° to the field vector [110]. 
A different hypothesis based on alterations in transmembrane potential is also described to justify the 
enhanced proliferative outcome of cells exposed to EF in culture. The first correlation between TMP 
and proliferative ability came from observations that non-dividing cells possess a very high TMP, 
whereas highly proliferating cells have low TMP [111]. Thus, the differential response of cancer 

https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib95
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/morphogenesis
https://www.sciencedirect.com/topics/materials-science/fibroblasts
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/wi-38
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ploidy
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib96
https://www.sciencedirect.com/topics/materials-science/dna
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-cycle
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib96
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib97
https://www.sciencedirect.com/topics/materials-science/cell-growth
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib98
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib99
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib82
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib100
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib101
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib102
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib103
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib104
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib105
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib106
https://www.sciencedirect.com/topics/materials-science/cell-death
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib105
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/growth-factors
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib107
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib108
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-fate-determination
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib85
https://www.sciencedirect.com/topics/materials-science/convection
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib109
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/electrophoresis
https://www.sciencedirect.com/topics/chemical-engineering/electroosmosis
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib23
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/embryonic-stem-cell
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib110
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/membrane-potential
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib111
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cancer-cell


 

 

  

  
 
 

 

  

 

cells and stem cells to external EF can be understood based on their bioelectric properties. The 
electrophysiology of many cancer cells reveals them to possess depolarized membrane potential, that 
confers high cell proliferation. On the contrary, hyperpolarization is a pre-requisite for stem cell 
differentiation, wherein osteogenesis and adipogenesis of hMSCs were inhibited under depolarizing 
conditions [112]. The terminally differentiated cells would respond to EF by virtue of their 
characteristic membrane potentials. In our previous works, we ascertained that EF stimulation and 
substrate conductivity of the culture platform induced proliferation arrest and premature differentiation 
of C2C12 mouse myoblasts [113], neuroblastoma and schwann cells [52], fibroblasts and 
osteoblasts [81] as well as hMSCs [76]. 
Based on the assumption of nonlinear characteristics between ionic currents and TMP, exposure to 
EFs can either raise the TMP of dividing cells or lower the high TMP in quiescent cells, thus 
enhancing or reducing proliferation (Fig. 3)[114]. Alongside, studies also confirm other important 
molecular determinants sensitive to alterations in membrane potential, such as voltage active 
K+ channels as well as gap junctions. These channels counter variations in membrane potential by 
shifting their voltage sensors across the electric field between the inner cytoplasmic and outer 
extracellular electrolytic solutions [115], [116]. While gap junction expression is necessary to maintain 
proliferation in adult stem/progenitor cells during regeneration [117], K+ channels have been 
implicated as important players in regulating cell-cycle progression [118]. Another mechanism that is 
likely to induce cell proliferation via electrical stimulation (ES) is through a signaling pathway that 
involves calcium/calmodulin, nitric oxide synthase, nitric oxide, and cGMP [119]. ES modulates 
binding kinetics of Ca2+ calmodulin (CaM) by a twofold increase [35]. Ca2+- CaM catalyzes the release 
of NO by the action of Nitric oxide synthase (NOS), which can subsequently activate cGMP that 
enhances growth factor activity to induce cell proliferation (Fig. 4) [120]. A different hypothesis points 
towards the release of pre-synthesized growth factors following EF exposure. The accumulation of 
these secreted growth factors in the culture medium could result in enhanced cell proliferation. As an 
example, the increased transcription of IGF-II mRNA and IGF-II secretion were recorded in cells, 
following the application of low-frequency electromagnetic fields [121]. 
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Fig. 3. Possible ways by which EF controls mitosis in cells: Intracellular EFs generated by the 
synchronized oscillations of microtubules, centrosomes and chromosomes regulate mitosis. 
Exogenous EFs can affect the mitotic spindle assembly by interaction with its polar microtubules, that 
possess permanent electric dipole moment. A disruption of these cytoskeletal tubulin components by 
EF can affect the cellular microenvironment hindering ion transport, nutrients, proteins and small 
molecules essential for cell division. In parallel, at the cell membrane, EF can alter transmembrane 
potential, activity of voltage-gated ion channels, gap junctions and conformation of cell surface 
receptors leading to fluctuations in intracellular ion concentrations, enzymes, metabolites and 
mitogens. Cumulatively, EF can either induce cell proliferation or cell division arrest through the 
above interlinked mechanisms. 
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Fig. 4. Schematic representation of proposed intracellular effects by which EF exerts its effect 
on stem cell proliferation. (A) One possible mechanism proposed involves enhanced cGMP activation 
by regulating calcium binding to calmodulin, resulting in the transient increase in NO production. (B) 
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Activation of K+ ion channel is also considered as a potent molecular determinant involved in EF 
induced proliferative response. K+ ion channels are known to influence cell cycle progression through 
K+ flux, which leads to change in membrane potential, cell volume changes and increase in 
intracellular Ca2+concentration. In addition, permeation-independent mechanism involving direct or 
indirect interaction between K+ channels and proteins may also trigger proliferation [122], [123], [124]. 
PM: Plasma membrane, NM: Nuclear membrane, Arg: L-arginine, NO: nitric oxide, NOS: nitric oxide 
synthase, sGC: soluble guanylyl cyclase, cGMP: cyclic guanosine monophosphate, PKG: 
cGMP-dependent protein kinase, Erk: extracellular signal-regulated kinase, CREB: cAMP response 
element-binding protein. 

3.2. Stem cell migration and orientation 

During wound healing and tissue repair, the migration of local stem cells to the wound site is largely 
controlled by endogenous EFs. On this basis, manipulation using exogenous EF was widely pursued 
to guide stem cell migration, in vitro to achieve better wound healing and regeneration, in vivo[92]. 
Under an applied EF of physiologically relevant magnitude, some cancer cell types migrated towards 
the cathode, some to the anode and others showed a lack of any directional response [125]. 
Unfortunately, the migratory response of stem cells to EF cannot be ascertained from published 
literature, because EFs elicit significantly different cell motility responses, depending on the cell type 
as well as passage, time and voltage applied. For instance, hMSCs and human induced pluripotent 
stem cells (hiPSCs) were shown to migrate towards anode, while hESCs (human embryonic stem 
cells) and EpSCs (epithelial stem cells) migrated towards the cathodal side [126], [127], [128]. The 
application of DC EFs of physiologically relevant magnitude (30–250 mV/mm) directed NSC 
migration, demonstrating its effectiveness to guide neurite growth and electrotaxis of neurons and 
other cell types [129]. Selectively, DCEFs were capable of inducing galvanotaxis of adult NSCs 
towards the cathode, but not the differentiated populations [130]. A similar cathodal migration of 
NSC-derived oligodendrocyte precursor cells was observed in another study [131]. This 
voltage-dependent migratory activity was found to be mediated by one of the regulators 
of actin nucleation, i.e actin-related proteins 2 and 3 complex (ARP2/3). In another study, applied DC 
EF of 150 mV/mm guided cell migration of endothelial progenitors towards the cathode and such 
migration was mediated by VEGF receptor signaling, in vitro[132]. 
Recent resurgence of interest for human induced pluripotent stem cells (hiPSC) over ESCs, steered 
many investigators to probe into the effect of externally applied EF on hiPSC migration and 
differentiation [127]. A small EF could induce significant directional migration of hiPSC cells cultured 
both in 2D or 3D environment (Fig. 5C). Even cancer stem cells reacted to a weak DC EF stimulus, 
by moving towards the cathode with a distinct morphological change and directional response within 
30 s [133]. The overexpression of EGF receptor, ErbB1 is hypothesized to trigger EF-guided 
migration of cells [125]. Furthermore, EF-induced asymmetric polymerization of F-actin and migratory 
orientation of rat EpSCs was deduced to be mediated via EGF receptors, ERK1/2 and PI3K/Akt 
signaling axis (Fig. 5B) [134]. DC EFs also caused murine ASCs to align at right angles to the field 
vector and elicited cathodal migration, that was field strength dependent. Additionally, their 
electrotactic response suggests the involvement of natural chemotactic signaling pathways that drive 
cell migration of multiple cell types [135]. Calcium signaling also plays a crucial role in the electrotaxis 
of cells [136]. Both intracellular calcium and extracellular calcium accumulation at the cathode during 
EF stimulation influence cell migration [137]. High DCEF intensity of 1400 mV/mm caused an 
elevation in intracellular calcium [Ca]i in both rat calvarial osteoblasts and human SaOS-2 cells by 
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involving voltage gated calcium channels (VGCCs), but with [Ca]i accumulation on the cathodal side 
in the calvarial osteoblasts and anodal side in SaOS-2, thus conferring differential directionality [138]. 
At higher extracellular calcium concentrations, the calcium ionic flow towards the cathode directed the 
migration of mouse fibroblasts towards the cathode in an EF strength dependent manner and the 
depletion of calcium by chelation with ethylene glycol tetraacetic acid (EGTA) led to a decrease in 
cathode-directed galvanotaxis [139]. A similar phenomenon was observed in the case of 
human keratinocytes stimulated with DCEF of 100 mV/mm, independent of extracellular calcium 
concentration [140]. On the contrary, low DCEF intensities of 50–300 mV/mm acted as a directional 
cue for the migration of bone marrow derived mesenchymal stem cells (BMSCs) to the cathode 
and macrophages towards the anode with electrotaxis regulated by EGFR accumulation and calcium, 
respectively [89]. 
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Fig. 5. (A) EF-driven cell migration via asymmetric receptor redistribution. Exogenous EF induces 
the cell surface receptors to concentrate at the cathodal side, resulting in asymmetric amplification of 
cytoplasmic signaling at the leading edge of the cells. In some cases, exogenous EF can even 
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establish ligand gradient leading to asymmetric cytoplasmic signaling because of the increased 
availability of more ligands for the receptors on one side of the cell to become activated than on the 
other side. (B) Activation of EGFR signaling pathway by EF and its involvement in cell migration. The 
process of cell migration is mediated by the activation of Ras/Raf/MAPK and/or PI3K/Akt/mTOR 
pathway which is implicated in the organization of the actin cytoskeleton in the migratory cell. (C) 
Directed migration of hiPSCs by DC EF application, with a critical EF limit of <30 mV/mm 
(Reproduced with permission from Ref. [127]). (D) Cellular alignment of hMSCs in response to 
applied EF. (Reproduced with permission from Ref. [8]. Copyright © 2015, Royal Society of 
Chemistry). The cells oriented at 90° relative to the EF vector, with elongated morphology. Both 
actin stress fibres (green) and focal adhesion complex (red) aligned at right angles to the EF vector, 
for EF strengths in the range of 50 mV/mm to 300 mV/mm. Nuclei is stained blue. 

While, exposure to DC EF has been proven to be effective in directional migration, the published 
results from clinical studies suggest the competence of pulsed EF in galvanotaxis [141]. In addition, 
balanced biphasic waveforms also can evoke a galvanotactic response in undifferentiated NPCs and 
has the added advantage of preventing charge accumulation, that is associated with DCEF. As a 
general rule, the field strength of applied EFs must be judiciously chosen to elicit cell migration 
without causing cell damage. Short exposure times can decrease the migration efficiency, while 
excessive exposure times can lead to cell death. With respect to cellular orientation, steady (DC) 
extracellular EFs have been shown to accelerate and orient the growth of embryonic neurites in 
cultures of explanted neurons. In addition to guiding neurite outgrowth, DCEFs could increase the 
length of the cell bodies, apart from modifying their orientation parallel to the direction of applied 
EF [27]. The preferential neurite growth or bending toward the cathode was found to be due to the 
field-induced cathodal accumulation of membrane glycoproteins, especially concanavalin A 
receptors by the process of passive electrophoretic receptor clustering on the cell surface under an 
external EF [142]. Both human adipose tissue-derived stem cells (hASCs) and human epicardial 
fat-derived stem cells (heASCs) were observed to elongate and align in the presence of DC EF of 
strength 600 mV/mm [143]. Conversely, rat MSCs reconstituted in 3D collagen scaffold failed to align 
due to their stronger 3D adhesion that resisted cell reorientation [144]. The minimum DC current 
density required to reorient the growth direction at the growth cone within 15 min was 
0.2–2 pA/μm2 (or 0.3–3 mV/mm). In the case of focal pulsed currents (pulse duration 5 ms), a typical 
combination of threshold pulse amplitude and frequency of 4 pA/μm2 and 10 Hz, respectively were 
required [145]. A theory suggests that the cells tend to elongate and to align their cytoskeletal major 
axis perpendicular to the force direction to minimize the EF gradient (Fig. 5D) [146]. To sum up, EF 
guided motility, elongation and orientation of stem cells can be utilized as a promising approach for 
future therapeutic strategies with the limitation of engineering adult stem cell populations in 
therapeutically relevant numbers within implanted grafts or direct the homing of stem cells in sufficient 
numbers toward sites of injury to elicit wound repair. 

3.3. Stem cell lineage commitment 

In a manner identical to the electric field guided morphogenetic development of the embryo to 
generate different tissues, exogenous electrical stimulation can be applied for the lineage 
commitment of stem cells. Specific EF parameters can direct the stem cell lineage, based on the 
inherent electrical conductivities and electrical signals of the body tissues. Table 2presents a range of 
electrical conductivities for different mammalian tissues, which are of the order of ∼10−3 S/cm for the 
heart, brain and muscle tissue, while it ranges to ∼10−4 S/cm in the case of cortical bone and 10−5 - 
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10−6 S/cm for wet to dry skin. These values vary with the tissue source, measurement mode and their 
inherent anisotropic tissue organization. Also, electrical signals vary with injury as well as the wound 
location. For example, skin wounds generate endogenous EF of 100–200 mV/mm, while corneal 
wounds are around 40 mV/mm [147]. In the light of the variation in electrical conductivities and 
electrical signals in different tissues, it is possible to modulate stem cell differentiation towards 
particular lineage commitments by varying the EF stimulation conditions. The following sub-sections 
describe the lineage commitment of stem cells guided by external EF. 
Table 2. Electrical properties of mammalian tissues, in vivo. 

 

 

Tissue type Electrical conductivity (S cm−1) at ∼50–100 Hz Reference 

Brain (2.5–3.0) x 10−3 Gabriel et al., 2009 [148] 

Heart 5 × 10−3 Gabriel et al., 2009 

Skeletal muscles (Anisotropic) (1.5–2.0) x 10−3 Gabriel et al., 2009 

Wet bone (Anisotropic) Cancellous: (1.6–2.0) x 10−3; Cortical: (5.8–6.3) x 10−4 Saha et al., 2009 [149] 

Skin 10−5 – 10−6 Gabriel et al., 2009 

3.3.1. Osteogenic differentiation 

The concept of using small electric currents for inducing osteogenic differentiation of stem cells was 
prompted mainly by the discovery of piezoelectric properties of bone [150], [151]. Despite numerous 
evidences showing various forms of EFs in enhancing osteogenic commitment, a direct comparison 
of these results is not possible due to variations in the type of current applied (i.e direct, 
electromagnetic or pulsed), and other parameters such as amplitude, duration, frequency, stimulation 
mode, electrode material, etc. For instance, it was elucidated that a 50 Hz pulsed electromagnetic 
field was the most potent effector of osteoblast differentiation in hMSCs amongst a range of 
frequencies tested, including 5, 25, 75, 100, and 150 Hz [152]. Altogether, the widespread and 
increasing application of EF in clinical, in vitro and in vivo studies exemplify its tremendous potential 
as a clinically useful adjunctive intervention in regenerative therapies. 
Hronik-Tupaj et al. [153], conducted the electric stimulation studies on hMSCs by exposing the culture 
system to an EF of 2 mV/mm, 60 kHz for 40 min daily. A delayed increase in osteogenic gene 
marker expression (ALP and Collagen I) was detected within 10 days in EF treated hMSCs, when 
compared to non-stimulated controls treated with osteogenic chemical inducers [153]. In stark 
contrast to this study, the application of high frequency capacitive electric field (2 mV/mm, 60 KHz) 
led to chondrogenesis in ASCs, with more expression of type II collagen and less type I & X 
collagen [154]. Other studies even indicate that PEMF alone is not sufficient to provide osteogenic 
stimuli to MSCs. Instead, culturing on ECM-like environment in the presence of soluble bio-factors, 
act together with EF stimulation to induce osteodifferentiation in hMSCs [155]. In another study, 
MSCs embedded inside collagen hydrogel constructs, when treated with alternating electric current in 
the absence of exogenous biochemical factors, induced osteogenic differentiation [156]. A large 
percentage of hMSCs underwent osteogenic differentiation under PEMF exposure with almost 
20–60% higher cell densities in cultures at the exponential stage of expansion [157]. Quite a number 
of other reports also revealed enhanced levels of alkaline phosphatase (ALP) activity and mineral 
deposition in both adipose and bone marrow derived MSCs, under EF stimulation [158], [159]. 
Notably, EF exposure modulates the mRNA expression of certain bone marker genes to promote 
stem cell osteogenesis during various stages of osteogenic differentiation process [160]. For 
example, pulsed EF exposure resulted in the accelerated upregulation followed by downregulation 
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of cbfa1 transcripts during osteogenesis. On the other hand, in the case of bone morphogenetic 
protein 2 (BMP-2), mRNA expression level was initially low followed by a late upregulation of BMP2 
transcripts [161]. It has been demonstrated that hMSCs exhibit elevated intracellular Ca2+ levels in 
response to electromagnetic stimulation, thereby serving as a key signal during osteogenic 
differentiation [162]. 

3.3.2. Neurogenic differentiation 

The notion about the limited capability of brain to regenerate was shattered as they identified neural 
stem cells (NSCs) in anterior sub-ventricular zone (SVZ) of the forebrain and hippocampus. However, 
only limited populations of the newly generated NSCs are ultimately recruited to the sites of injury, 
and undergo consequential differentiation into the necessary neural cell types [163]. Knowing the 
involvement of endogenous EFs in neurogenesis, axon guidance, and nerve growth, several groups 
adopted the biophysical approach of EF stimulation to regulate the migration and integration of NSCs 
in the mammalian CNS [164]. A very high gene expression of maturation 
markers, ENO2 and MECP2 was apparent at an early culture stage in electrically (5 mV, 0.5 mA, 
25 ms intermittent stimulation) stimulated neural stem cells (NSCs) cultured on conducting ropes, 
which is a hallmark of neuronal differentiation of NSCs [165]. In another study, apart from inducing 
directional migration of NSCs, DC EF stimuli of 115 V/m field strength could also enhance 
differentiation specifically into neurons, but not to astrocytes or oligodendrocytes [129]. Although 
questionable, the exposure of NSCs to oscillating AC EF of 1 Hz induced a predominant 
differentiation into astrocytes over neurons [166]. Other examples include electro-stimulation with 
parameters of 4–8 μA/cm2 current density, pulse duration of 200 μs and frequency of 100 Hz caused 
the largest increase in cell multiplication and neural differentiation of fetal NSCs [108]. Unlike 
non-stimulated embryoid bodies (EBs), EF stimulated EBs assumed neuronal fate by adopting the 
appearance of various types of neuronal cells, when injected into injured spinal cord, an environment 
that is non-neurogenic [167]. 
DC stimulation is the most widely studied among the EF stimulation modalities to date, for remedial 
neural regeneration and neurite outgrowth through an injured or ischemic site [168]. On the other 
hand, it was validated that AC stimulation with high duty-cycle (1-kHz 80% duty-cycle) is also capable 
of eliciting a neural response similar to DC ES, with additional benefits of higher field propagation and 
lower consumption of electrical power. When NSCs are exposed to electromagnetic stimulation, 
spontaneous Ca2+ transients are developed due to increased Cav1-channel (L-type) activity [169]. 
Ca2+ influx through Cav1 channels stimulate neurogenesis by Ca2+-related signal transduction 
pathways, that are mainly mediated by phosphorylation of CREB transcription factor. Especially, in 
the case of EF stimulated bone marrow derived hMSCs, a rise in neuronal marker gene expression 
level was determined to be mediated by CREB phosphorylation [170]. It is also speculated that EF 
exposure increases CREB DNA binding activity, particularly to a class of polynucleotidesknown as 
cAMP [171]. Such a process is crucial for a number of cellular phenomena including cell proliferation, 
differentiation, and other adaptive functions [172]. Challenging this prevailing claim of L-type channel 
activity by EF, Brosenitsch and Katz [173]demonstrated the pivotal role of N-type calcium channels in 
neuronal gene expression. Notwithstanding, neural cells can sense differences in the calcium entry 
from two distinct subtypes of voltage-activated calcium channels and can accordingly recruit specific 
intracellular signaling pathways to trigger subsequent gene expression. 

3.3.3. Cardiomyogenic differentiation 
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The cardiac muscle tissue in the native heart has specialized electrical signal conduction and 
propagation pathways such as electromechanical coupling via gap junction channels and this 
coordinated electrical signaling mechanism is involved in heart contraction [51], [174]. Ideally, the 
creation of a cardiac-mimetic electrical environment during in vitro culture should result in the 
progressive generation of functional cardiac tissue. Yet, biologists toy with traditional static cell culture 
methods to maintain differentiated cardiac cells, despite its greater tendency to 
dedifferentiate, in vitro[175]. But the scenario reversed eventually with the advent of cardiac tissue 
engineering, wherein a combination of mechanical, electrical, and functional integration was realized 
as an ideal approach to generate engineered cardiac constructs [97]. A detailed genome microarray 
analysis of ESCs after electrical pacing revealed an apparent decline in the expression of genes 
governing self-renewal and pluripotency such as Oct4 and Fox3. Simultaneously, a number of genes 
and pathways related to early mesodermal, cardiac and neural development and differentiation were 
significantly upregulated [176]. Previous works have also elucidated that EF stimulation promotes the 
expression of both early and late cardiac-specific genes in hESC-derived cardiomyocytes [177]. 
Further, an increasing number of publications showed the association of exogenous EF in inducing 
cardiogenesis in embryoid bodies (EBs) derived from hESCs [4], [178]. Despite the fact that hESCs 
can differentiate into cardiomyocytes via EB formation, the low percentage of differentiated 
cardiomyocytes and heterogeneity of cell populations limit the usage of hESC derived 
cardiomyocytes for clinical applications [179], [180]. A brief electrical stimulation (65 mV/mm or 
200 mV/mm field strength, 1 Hz frequency, 1 ms pulse width) for 2 weeks after cell plating led to a 
marked escalation in the fraction of beating EBs along with pronounced augmentation in cardiac gene 
expression level (Fig. 6B). In addition to the stem cell plasticity related transdifferentiation ability of 
MSCs to cardiomyogenic progenitors post-transplantation in the myocardium [181], pulsed electrical 
stimulation either in the presence of 
conducting nanostructures [182] or demethylation agent 5-azacytidine [183] or a combination of 
both [76] is validated to promote cardioprogenitor phenotype in MSCs (Fig. 6A). Likewise, stimulation 
with monophasic square-wave pulses of 5 mV/mm was proven to be effective in evoking 
cardiomyogenic differentiation potential even in adipose tissue-derived progenitor cells in 2D and 3D 
culture milieu [184], [185]. Here, it may be important to emphasize the controversy around the 
transdifferentiation of MSCs into functional cardiomyocytes. Most literature reports indicate that bone 
marrow derived MSCs can be induced to express cardiomyogenic marker proteins upon co-culture 
with cardiomyocytes in vitro, but they do not develop into contractile electrically active functional 
cardiomyocytes [186], [187], [188]. However, the authors believe that electrical stimulation can be 
used optimally to such co-cultures along with chemical inducers to differentiate MSCs into beating 
cardiomyocytes. It must be noted without any conclusive experimental evidences, the 
transdifferentiation of MSCs would remain highly controversial. 
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1. Download high-res image (925KB) 
2. Download full-size image 
Fig. 6. Electrical stimulation induced cardiac differentiation of stem cells. (A) hMSC differentiation 
induced by electric field assisted gold nanoparticles (GNP) actuation [76]. Fluorescence image in the 
right top corner shows the tube-like morphology exhibited by intra/extracellularly electroactuated 
hMSCs at 1 Hz frequency (cytoskeletal actin - green and nuclei - blue). (B) Expression of 
cardiac-specific markers in hiPSC derived cardiomyocytes that were electrically stimulated at 
200 mV/mm for 5 min. Scale bar: 50 μm (Reproduced with permission from Ref. [180], under Creative 
Commons Attribution 4.0 International Public License: http://creativecommons.org/licenses/by/4.0/). 
(C) Increased ROS production in embryoid bodies (EB) after EF application at 1 V/mm for 90 s. ES 
enhanced the number of cardiac-differentiated hESCs by the downstream activation of 
ROS-triggered signaling pathway. Fluorescence micrograph of EB loaded 
with dichlorofluorescein (DCF) before and 20 min after ES (90 s) is shown in the image. (Reproduced 
from Ref. [4], Copyright 2009, with permission from Elsevier). (D) hESC derived cardiomyocytes 
adapting their natural beating frequency to the EF stimulation frequency, an effect mediated by the 
expression of troponin (green) and hERG potassium channels (red). Cells were counterstained 
with DAPI (blue nuclei). Scale bar: 50 μm. Frequency dependent change in calciumcycling upon ES is 
shown in the bottom panel. Calcium imaging on spontaneously beating EBs was performed after 7 
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days of ES, after loading the cells with a calcium sensitive dye (Fluo-4 AM). Adopted with permission 
from Ref. [192], under Creative Commons Attribution 4.0 International Public 
License: http://creativecommons.org/licenses/by/4.0/). 

 

Almost all the ES studies performed to date for cardio-differentiation involves the use of 1–2 Hz 
square-wave monophasic pulses, rather than the use of a steady current. These pulsed signals are 
implicated in the fusion of mononuclear cells to form a multi-nucleated cardiac symplasm or 
syncytium. This is in contrast to the DC signals that are involved in direct cell migration and 
morphological changes during the developmental stage [60]. Correspondingly, several investigations 
confirmed enhanced beating of cardiomyocytes [189], myotube contractile behavior and sarcomeric 
assembly [190] upon stimulation with low frequency electric pulses. Particularly, electrical stimulation 
with frequency of 1–2 Hz activated transient surges in intracellular Ca2+ levels along with the 
augmented sarcomere assembly and maturation, while higher frequency (10 Hz) failed to trigger such 
effects in myotubes [191]. With respect to pulse duration, a time period of 1–2 ms is ample time to 
excite cardiac tissue and cells, and besides, this signal span is adequate to collapse the double 
layers formed on the stimulation electrodes between successive pulses. 
From a tissue engineering perspective, Tandon et al. [60] elegantly described the protocol to deliver 
pulsatile electrical fields to engineered 3D constructs, mimicking cardiac tissue. Electrical conditioning 
of hESC-derived cardiomyocytes in such 3D aggregates promoted the generation of mature, 
electromechanically coupled cells (Fig. 6D). It was also found that the stimulation frequency alone 
can promote the final and complete functional maturation of cardiomyocytes [191]. Further 
exploratory studies also revealed that the stimulatory effect of EF on cardiomyogenesis of hESCs is 
also routed through mechanisms involving intracellular ROS production (Fig. 6C) [4]. Recently, efforts 
have also been made towards the development of electrical stimulation bioreactors to examine the 
roles of multiple ES parameters, such as the nature of the electrode material, period of electrical 
stimulation and developmental/maturation stage of the cells in a single microfluidic device [4]. 

 

 

3.3.4. Angiogenesis 
In line with the myriad of cell responses, such as cytoskeleton rearrangements, migration, 
proliferation, and differentiation, exogenous EF exposure is also known to induce angiogenesis [193]. 
The endogenously occurring differences in bioelectric potentials are present in and around the blood 
vasculature, both in relation to fluid flow of blood and in locations of neovascularization, such as 
during development of the fetus and cancer metastasis [194]. In addition, EF can initiate and guide 
blood vasculature formation by activating the VEGF receptor signaling pathway, to evoke important 
pre-angiogenic cellular events, in vivo. Apparently, endothelial cells respond to EF by an increased 
secretion of VEGF and subsequent activation of VEGF receptors 
(VEGFRs), phosphatidylinositol-3-kinase (PI3K)-Akt and Rho-ROCK elements of the VEGFR 
signaling pathway [194]. Even in osteoblasts, biphasic electric current induced a 3 fold enhancement 
in the secretion of VEGF [195]. Also, hASCs exposed to DC EF of 600 mV/mm for 2–4 h upregulated 
the gene expression of connexin-43, thrombomodulin, VEGF, and FGF [143]. Electrical exposure of 
EBs derived from mouse ES, resulted in robust expression of HIF-1α and VEGF, followed by 
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endothelial differentiation and vasculogenesis. It was also deduced that the stimulation of 
angiogenesis in ES was mainly mediated by the activation of ERK1,2 and JNK, whereas 
p38 MAPK activity was non-essential [19]. Interestingly, the pro-angiogenic response due to high 
frequency EF stimulation does not require the direct binding of VEGF to VEGFR2 receptor, rather it 
occurs via a frequency-sensitive VEGFR2-independent activation of the MAPK/ERK pathway [196]. 
Even, pulsatile ES of low strength could cause a marked increase in vascular permeability, uniform 
blood flow and vasculature density in the ischemic limb of rats by augmenting the de novo synthesis 
of VEGF protein [197], [198]. Nonetheless, persistent ES in the skeletal muscle tissue might be 
unsafe, as it fails to reinstate blood flow and promotes muscular atrophy as well as worsened 
fatigue [198]. All these results reinforce the idea of applying ES to trigger cells in the ischemic tissue 
zones to bio-manufacture required amounts of endogenous VEGF proteins, so as to promote local 
angiogenesis. Such strategies offer new perspectives to repair post-stroke neural damage or 
ischemic myocardial damage by combining stem cells with external ES as a multifaceted approach 
for neovascularization. 
Summarizing, the electric field induced stem cell response in terms of proliferation, migration and 
differentiation to osteogenic, neurogenic and cardiomyogenic as well as angiogenesis under 
particular EF stimulation parameters and protocols have been described so far. Table 3 presents an 
overview of EF stimulation effects on stem cells, in vitro. A glance at the electrical stimulation 
parameters in Table 3 will reveal EF intensities of the order of 10–100 mV/mm with pulse durations of 
10–100 ms and low frequencies of 0–2 Hz to be optimal for effective proliferation and differentiation of 
lineage committed stem cells. However, for the electromechanical coupling of cardiomyocytes leading 
to contractile activity and electrical signatures, high EF intensitites of 300–500 mV/mm with short 
pulse widths of 1–2 ms and frequencies close to that of the native heart rate (1.2 Hz) and accelerated 
heart rate (2–3 Hz) are applied. 
 

 

Table 3. An overview of EF stimulation effects on stem cells in vitro. 

Electrical stimulation Stimulation 
parameters 

Cell type Outcome of the study Reference 

Capacitative-resistive 
electric transfer 
(CRET) 

448 kHz, 50 
μA/mm2, 5 min 
‘On’ per 4 h for 
48 h 

Adipose derived stem 
cells (ADSCs) 

Enhanced ADSC proliferation 
without any effect on their 
adipogenic, chondrogenic and 
osteogenic differentiation 

Hernandez-Bu
le et al., 
2014 [99] 

Direct current (DC), 
Capacitive coupling 
(CC), pulsed 
electromagnetic field 
(PEMF), and 
Degenerate wave (DW) 

10 mV/mm at 
3 h/day for 5 
days 

Bone marrow 
mesenchymal stem cells 
(BMMSCs) 

DW and CC promoted the 
expression of migratory genes 
and proliferation in BMMSC, 
while reducing apoptotic and 
cytotoxic effects 

Griffin et al., 
2011 [105] 

Transformer-like 
coupling (TLC) 

0.36 mV/mm, 
7 ms, 10 Hz for 
28 days 

Human mesenchymal 
stem cells (hMSCs) 

TLC generated a pulse electric 
field that promoted osteogenesis 
of hMSCs cultured on artificial 
ECM coated polyaniline 
substrates 

Thrivikraman 
et al., 
2015 [78] 

Direct current electric 
field (DC EF) 

16 mV/mm Human neural stem 
cells (hNSCs) 

Small DC EF of 16 mV/mm 
caused galvanotaxis of hNSCs 

Feng et al., 
2012 [126] 
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and neurite outgrowth towards 
the cathode, while higher field 
strengths reduced the hNSC 
galvanotactic response 

Direct current electric 
field (DC EF) in a 6 
well plate 
configuration 

100 mV/mm at 
1 h/day for 7 
days 

ADSCs from 
Sprague-Dawley rats 

Osteogenic differentiation of 
ADSCs exposed to DC EF 
occurred with the upregulation 
of Runx2, osteopontin and 
osteonectin 

Mobini et al., 
2016 [40] 

Direct current (DC EF) 
and pulsed electric 
fields (PEF) 

10 mV/mm, 
100 ms, f = 0.1, 
1 and 10 Hz at 
15 min/day 

Human mesenchymal 
stem cells (hMSCs) 

DC EF elicited neurogenic 
expression, while PEF of 1 Hz 
induced the upregulation of 
cardiomyogenic genes in 
hMSCs 

Thrivikraman 
et al., 
2016 [76] 

Biphasic rectangular 
pulsed electric field 

1-6 Hz, 1 ms, 
3–4 mV/mm for 
7 days 

Cardiomyocytes derived 
from human embryonic 
stem cells (hESCs) and 
human induced 
pluripotent stem cells 
(hiPSCs) 

3D aligned cardiac tissues 
(biowires) with striations as 
well as electrophysiological 
activity and intracellular 
calcium oscillations were 
recorded. 

Nunes et al., 
2013 [94] 

Biphasic voltage pulses 
using a commercial 
Myopacer (IonOptix) 

10 V, 10 ms, 1 
and 2 Hz 

Cardiomyocytes derived 
from embryoid bodies 
(EBs) of hESCs 

EBs encapsulated in 3D 
hydrogel networks exhibited 
spontaneous contraction 
behavior and responded to 
external electrical pacing 

Chung et al., 
2012 [42] 

Square wave pulse 
stimulation (Grass 
Technologies) 

500 mV/mm, 
2 ms, 0.5, 1, 
2 Hz 

3D culture of 
Cardiomyocytes derived 
from EBs of hESCs and 
iPSCs 

Electrical conditioning elicited 
maturation of cardiomyocytes, 
connexin expression and 
beating rate adaptability to 
stimulation frequency 

Eng et al., 
2016 [192] 

Contactless EF 
stimulation via 
interdigitated array of 
Pt electrodes 

10 V, 10 ms, 
1 Hz for 2 days 
after 1 week 
culture 

C2C12 mouse 
myoblasts cultured in 
microgrooves 

EF stimulation promoted 
formation of mature skeletal 
muscle tissue constructs with 
contractile activity 

Ahadian et al., 
2013 [199] 

 
4. Mechanisms of EF induced stem cell response 
Several cellular effects are understood to be mediated by exogenous EF through a mechanism called 
electrocoupling. The basis of invoking such an indirect effect emerges from the high resistance 
imparted by the plasma membrane, which prevents the penetration of electric stimuli, regardless of 
the conducting nature of cytoplasm [18]. One of the possible electrocoupling mechanisms involves 
asymmetric redistribution/diffusion of electrically charged cell-surface receptors in response to electric 
field, which further activates numerous downstream signaling cascades. Another possible mode is 
directly via the activation of voltage-gated Ca2+ channels by cell membrane depolarization, that leads 
to the most consistently occurring cellular response to electric stimuli, i.e. the elevation in 
intracellular calcium ion concentration. A detailed explanation along with numerous hypotheses 
regarding the possible interaction mechanisms between EF and biological systems are discussed in 
the subsequent sections. 
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4.1. Signal transduction pathway 
Electrical signals are sensed and converted into biochemical cues by multiple pathways within the 
cells, resulting in various biological responses. The activation of signal transduction pathways is 
considered as the possible mechanism by which the applied electrical stimulation could exert control 
over cellular functions. A major signal transduction pathway, which governs the transcription of 
specific mRNAs in response to external stimulation is the activation of the MAPK (mitogen-activated 
protein kinase) cascades.  
 
The MAPKs are generalized family of serine/threonine kinases, that regulate intracellular events in 
response to extracellular signals [200]. The sequential activation of protein kinases within these 
cascades (extracellular signal-regulated kinases: ERK1/2 and ERK5, Jun amino-terminal kinases: 
JNK, p38MAPK) mediates numerous important cytological activities, including proliferation, 
differentiation, metabolism, cell cycle progression and apoptosis, depending on the type of stimuli and 
cell [201], [202]. Several literature reports raise the possibility of the activation of MAPK pathways in 
response to EF, although it remains to be determined methodically in every aspect. The EF induced 
elevated MAPK activation was documented in endothelial angiogenic response as well as in HL-60 
(human promyelocytic leukemia cell line) differentiation [11], [196]. Mechanistically, cell motility and 
wound healing responses elicited by electrical field gradients occur through the dynamic regulation of 
PI(3)Kγ (phosphoinositide 3-kinase) and PTEN (phosphate and tensin homolog) signaling. An 
accelerated and progressive enhancement in the phosphorylation of extracellular-signal-regulated 
kinase (ERK), p38 mitogen-activated kinase (MAPK), Src and Akt on Ser 473 site was distinctly 
observed in cells undergoing electrotaxis [203]. It was also reported that the applied low-intensity 
0.1 ms electrical current could induce a transient and low level activation of p38-p53 pathway, which 
is implicated to play significant roles in annihilation of malignant tumors as well as downregulation of 
inflammatory cytokine responses and metabolism [204]. The cellular orientation and movement of 
adult stromal cells in response to EF was observed to be linked to the activation of PI3K and ROCK 
signaling pathways [144]. 
 
It is also well-established that the gene expression of specific markers in lineage committed stem 
cells is mainly through the sequential activation of MAPK pathway centered around regulators of 
alpha-foetoproteins (Raf), ERK, p38 or jun-kinase 1/2/3, leading to the phosphorylation of 
transcription factors, which controls genotypic expression [205]. Earlier studies suggest c-Jun as the 
prominent downstream nuclear effector of MAPK/ERK pathway. c-Jun can form dimers either with 
itself or with other related transcription factors, like c-Fos. This is expected to result in the 
transcription of several AP-1 responsive genes that are shown to induce differentiation in stem 
cells [206]. 
 
The central pathway of signal transduction could be due to calcium influx through voltage-regulated 
calcium channels causing rapid phosphorylation of Src tyrosine kinases. This in turn leads to the 
formation of a Shc-Grb2 complex and Ras activation along with subsequent induction of downstream 
MAPK pathway [207]. In addition, Rho family members can also activate MAPK signaling pathways, 
so these small GTP (Guanosine-5’-triphosphate) binding proteins function as dual regulators 
of cytoskeletal remodeling and gene expression [125]. Moreover, membrane depolarization can 

https://www.sciencedirect.com/topics/materials-science/transcription
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mitogen-activated-protein-kinase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/serine-threonine-specific-protein-kinase
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib200
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-kinases
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/kinase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mapk7
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/n-terminus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-cycle
https://www.sciencedirect.com/topics/materials-science/cell-death
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib201
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib202
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib11
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib196
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-migration
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pten-gene
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tensin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/phosphorylation
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib203
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytokine
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib204
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stromal-cell
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/phosphoinositide-3-kinase
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib144
https://www.sciencedirect.com/topics/materials-science/gene-expression
https://www.sciencedirect.com/topics/materials-science/stem-cells
https://www.sciencedirect.com/topics/materials-science/stem-cells
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib205
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/effector-biology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mapk-erk-pathway
https://www.sciencedirect.com/topics/chemical-engineering/dimers
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib206
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tyrosine-kinases
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib207
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rho-family-of-gtpases
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/guanosine-triphosphate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-function
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytoskeleton
https://www.sciencedirect.com/science/article/pii/S0142961217306300#bib125


 

 

 

 

 

 

 

 

  

induce phosphorylation of tyrosine moieties in EGF (epidermal growth factor) receptors to an extent 
required to activate the ERK/MAP kinase pathway [208]. 
  
Alternate branch point of MAP kinase activation can be possibly coupled with the integrin, one of the 
major receptor that creates focal contact between cell and matrix. Accordingly, it can be postulated 
that in response to adhesive interaction to electroconducting substrates, the clustering or 
redistribution of integrin might induce the autophosphorylation of FAK (Focal adhesion kinase). FAK 
further complexes with Src, leading to Ras activation, while Ras in turn couples integrins to activate 
the ERK/MAPK signaling pathway [209]. Thus, depolarization induced activation of MAPK pathway 
links electrical cues to the alteration in gene expression and lineage commitment, a process 
analogous to those signaling cascades activated by the binding of growth factors to their specific 
CSRs (Cell surface receptors) [208]. 
 
Summarizing, cells respond to external electrical cues through complex and interconnected network 
of biophysical transduction signaling pathways modulating gene expression. Such phenomenon 
ultimately decides the fate of the cells. It is reported that the transcript levels for c-myc, c-fos, c-jun, 
and protein kinase C are elevated in multiple cell types treated with a sinusoidal EF, and under varied 
exposure conditions [210]. Likewise, the application of a specific and defined CC EF on osteoarthritic 
articular cartilage explants led to significant upregulation of collagen and proteoglycan genes and 
interleukin-induced downregulation of a number of metalloproteinases [211]. Previous studies 
demonstrate the blocking of signaling pathways inhibited EF induced proliferation, migration and 
differentiation of stem cells [212]. This suggests the mediation of stem cell response to external EF 
via signal transduction pathways. Overall, there is no doubt that the impact of EF on cellular functions 
can be attributed to enhanced signal transduction. However, aside from the above mentioned 
instances, several other intrinsic pathways that are specifically influenced by EF remain largely 
unexplored. 
 
4.2. Ca2+ transients 
One of the immediate effects in terms of cellular response to EF stimulation is the increase in 
intracellular Ca2+. Calcium–mediated signaling regulates many different cellular processes and its 
impact is known to influence nearly every aspect of cellular life [213]. The alterations in free 
intracellular calcium concentration have been implicated in specific courses of cellular events in 
myriad cases, especially in the migration and differentiation of individual cells. The importance of 
intracellular calcium and extracellular accumulation at the cathode in electrotaxis has been briefly 
dealt in section 4.2. Here, the effect of calcium transients on stem cell differentiation is described. 
Intracellular Ca2+ increase is driven in two fundamental ways; by influx of Ca2+ from extracellular space 
via ion channels embedded in the plasma membrane or by the release of Ca2+ from the internal stores 
of endoplasmic reticulum (ER) via specialized receptor/channels on the ER [214]. 
 
The plasma membrane is the prime location of EF interaction with the cell, and it is hypothesized that 
an EF interference with membrane-mediated detection of biochemical signals, transduction and 
amplification may regulate many field guided phenomena in biological systems. Of note, EF exposure 
can directly stimulate L-type voltage gated Ca2+channels (VGCCs) in the plasma membrane 
(Fig. 7) [215]. This can elicit many regulatory responses, including high levels of nitric oxide (NO) 
generated through the enzymatic action of the two Ca2+/calmodulin-dependent nitric oxide synthases, 
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nNOS and eNOS [216]. In order to activate VGCCs, the applied EF must be adequately large to 
create an induced transmembrane potential difference of the order of 100 mV. 

 
1. Download high-res image (173KB) 
2. Download full-size image 
 
Fig. 7. Schematic illustration of the possible pathways of calcium influx upon exogenous EF 
exposure. ES can elevate intracellular calcium level either through influx from extracellular pools 
through the activation of VGCC, NCX, SACC, etc. or through the release from endoplasmic reticulum 
stores via GPCRstimulation. EF can even trigger specific integrin subunits to regulate intracellular 
calcium currents via Src and FAK signaling. 

Theoretically, voltage-gated ion channels are transmembrane helical sub-units containing several 
charged amino acids that can move in response to an applied EF. For these ion channels, the 
equilibrium between closed and open states varies within a small window of applied voltage [217]. 
Secondly, it is proposed that EF can stimulate stretch-activated Ca2+channels (SACCs), which itself 
can mediate the spike in [Ca2+]i by permitting the influx of Ca2+[18]. A greater influx of Ca2+ from the 
extracellular space is routed through the Na+-Ca2+-exchanger (NCX). It is also speculated that ES can 
activate G-protein coupled receptors (GPCR), leading to phospholipase C (PLC) activity triggered 
synthesis of secondary chemical messengers, inositol 1,4,5-trisphosphate (IP3) 
and diacylglycerol (DAG) from phosphatidylinositol 4,5-bisphosphate present in the plasma 
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membrane (Fig. 7). Subsequently, the diffusion of IP3 through the cytosol and binding to IP3 
receptors (IP3R) in the endo/sarcoplasmic reticulum, leads to Ca2+ release from internal 
stores [214], [218]. The GPCRs are highly sensitive to variations in the electrical properties of cell 
membrane and thus exogenous EF play a pivotal role in the energetics and dynamic conformational 
transitions of these receptors [219]. It also appears that several different integrins, activated by EF, 
appear to mediate calcium signaling via tyrosine kinase-dependent coupling and by other unidentified 
pathways that can couple integrins to calcium release both, from IP3-sensitive intracellular stores, or 
to the influx of Ca2+ from extracellular space [220]. 
 
Ca2+ influx is necessary for the fate determination of stem cells and is implicated to play a central role 
in triggering calcium dependent cell signaling cascades at appropriate stages of stem cell 
differentiation [167], [221]. Especially, cells recognize even low intensity calcium signals, or transient 
calcium spikes, known as calcium oscillations through well-defined mechanisms to decipher cellular 
instructions encoded in the Ca2+ dynamics. Cells can then perceive amplitude or frequency 
modulation and discern the instruction encrypted in the calcium signal [221]. Notably, there is a 
proven correlation between the frequency of Ca2+oscillations and the nature of the extracellular 
stimulus [222]. It is also compelling to note that the intracellular Ca2+ signaling cascades that are 
triggered in response to patterned ES are distinct from those arising from chronic membrane 
depolarization. This differential activation for specific intracellular protein kinases can differ based on 
the strength/amplitude of the cytosolic calcium signal [173]. Hence, the downstream effectors of 
signaling pathways can specifically recognize the source and spatio-temporal calcium profiles, 
thereby offering specific transcriptional activity. 
 
Ca2+ concentration has been associated with EF-induced guidance of stem cell differentiation. The 
changes in [Ca2+]i resulting from intrinsic cellular events or from programmed cell cascades, have 
been reported to prompt distinct series of cell behavior in many instances, like in osteogenic and 
neuronal differentiation of MSCs [221]. AC and pulsed electric fields induce an increase in [Ca2+]i by 
promoting Ca2+ influx across the plasma membrane. For instance, the application of 1 or 10 Hz EF to 
human cells led to a 4-fold increase in [Ca2+]i (from 50 nM to 200 nM) within 0.5 h of field exposure. 
Parenthetically, Ca2+ deficiency in the extracellular culture medium could not elicit the EF-induced 
elevation in [Ca2+]i, implying that extracellular Ca2+ influx across the plasma membrane is the reason 
for the observed [Ca2+]i increase [18]. Indeed, this increase in [Ca2+]i could be routed by either direct 
entry of Ca2+ ions through SACCs, or indirect entry through the NCX or VGCC, but the possible route 
has not been clarified. 
 
Collectively, a link between electric cues, calcium entry and cellular response exist and the 
elucidation of the molecular mechanisms by which these second messengers act is outlined in Fig. 7. 
Besides that, a lot of efforts still need to be invested to seek a better understanding of the regulatory 
mechanisms governing EF-mediated Ca2+ increase. Overall, the effect of electrical cues on the stem 
cell behavior is a result of intricate interplay of events and pleiotropic effects involving Ca2+ ions, 
thereby mimicking and complementing the role of growth factors in mediating biological responses. 
 

4.3. Mechanotransduction: cytoskeletal reorganization and actin distribution 
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Mechanotransduction is the conversion of external mechanical stimuli into intracellular electrical or 
chemical signals [223]. The consequence of mechanotransduction are manifested in the form of 
opening/closing of mechano-sensitive ion channels, changes in cell cytoskeleton or a cascade of 
biochemical signaling pathways governing self-renewal and differentiation in stem cells [224]. The 
inverse effect of mechanotransduction is the transformation of electrical stimulus into mechanical 
activity, that causes tension in the cytoskeleton due to reorganization of the cytoskeletal filaments 
and actin redistribution. Furthermore, electrical cues from extracellular space interacting with the 
plasma membrane also induce changes in the state of cellular actin [225].  
 
In this regard, electric stimulation has been shown to extort either direct effects on the cytoskeleton, 
or on cellular processes mediated by the cytoskeleton [37]. For example, short electric pulses 
induced a field strength dependent polymerization of G-actin [225]. A transitory increase in the 
synthesis of cellular filamentous actin by 80% was recorded after ES, with an asymmetric distribution 
towards the cathode [226]. Similarly, direct evidence of EF induced disorganization of actin 
filaments were provided by Onuma and Hui [227]. Studies can also be found in the literature on the 
sensitivity of actin microfilament reorganization to the frequency of applied EF. Seemingly, the actin 
microfilaments were distorted and could not reorganize when exposed to rapidly oscillating electric 
fields [228]. The application of 200 mV/mm DCEF resulted in a near two-fold decline in the elasticity 
of hMSCs due to the disassembly of actin structures. 
  
It was demonstrated that EF induced depletion of ATP led to the blockage of the ERM linker proteins 
that are known to bridge the plasma membrane and actin filaments, resulting in the partial disruption 
of cytoskeleton (Fig. 8D) [37]. Unlike the noticeable effect of DC EF on actin reorganization, 
microtubules or intermediate filament arrangement were found to be unaffected at the same field 
parameters tested. The Rho family of GTPases, including Cdc42, Rac and Rho, has been implicated 
in regulating the dynamics of actin microfilament [229]. 
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Fig. 8. (A) Fluorescence image showing circular translocation of kinesin powered microtubule with the 
application of rotating EF. The continuous application of electrophoretic force rapidly redirects the 
negatively charged microtubules parallel to the electric field, by deflecting their leading end toward 
the anode. Reprinted with permission from Ref. [217]. Copyright (2007) American Chemical Society. 
(B) Schematic showing intracellular EF interactions between chromosome and microtubules, which 
regulate several nuclear and cellular events during mitosis and meiosis. These EFs are generated 
under energy excitation through the synchronized electric resonant oscillations of the dipolar 
structures of super-macromolecular complexes. Reproduced with permission from Ref. [216], © Zhao 
and Zhan; licensee BioMed Central Ltd. 2012, under Creative Commons Attribution 2.0 International 
Public License). (C) 3D Protein model shows the electric charge distribution on the surface of the 
α-tubulin monomer at physiological pH. Red colour indicates positive charge, blue negative, and white 
neutral areas. 

Reprinted from Ref. [225], Copyright © 2002 with permission from Elsevier. (D) Immunofluorescent 
image showing the disruption of actin stress fibers (labeled in red) in hMSCs after exposure to a 
200 mV/mm DC EF for an hour. A noticeable difference in the disassembly of actin filaments can be 
observed in serum containing media, wherein actin polymerization occurred near the cathodal side 
and depolymerization happened at the anodal side of the cell. White arrow indicates the direction of 
the EF applied. Adapted and reproduced from Ref. [37], Copyright © 2009 Biophysical Society, with 
permission from Elsevier. 
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Of the cytoskeletal architecture of the cell consisting of microtubules, actin filaments, and 
intermediate filaments, microtubules are of unique importance since they exhibit several characteristic 
features that distinguish them from other sub-constituents of the cytoskeleton [230]. Interesting is the 
fact that microtubules generate a longitudinal electric field around them, under intracellular energy 
excitation, by the harmonic oscillation of α and β tubulinsubunits that form electric dipoles during 
microtubule polymerization [231]. In an attempt to manipulate microtubules using externally applied 
EFs, Kim et al. demonstrated the alignment of kinesin powered microtubules along the field direction 
by moving their leading end towards the anode [232]. Intriguingly, circular translocation of moving 
microtubules was achieved by applying rotating EF around the periphery of the device in the same 
study. Likewise, several published literature have shown that EFs can be successfully employed in 
prompting the parallel assembly and orientation of microtubules, in vitro[233], [234], [235]. 
  
Previous investigation even suggests the possibility to selectively steer negatively charged 
microtubules using perpendicular EF of 0–5000 mV/mm (Fig. 8A) [236]. Contrasting results were also 
reported previously, wherein suspended microtubules failed to orient in the presence of 
weak electrophoretic forces [237]. 
 
Nevertheless, it is postulated that electric dipoles of actin and tubulin orient along the field direction, 
thus promoting polymerization parallel to the EF lines. Also, actin polymerization in the direction of EF 
is the key driving force for electrotaxis or EF guided cell migration. Actin-related proteins 2 and 3 
(ARP2/3) complex were shown to promote actin nucleation and polymerization in the direction of 
applied EF of 50–200 mV/mm, which guided the cathodal migration of neural stem cell 
derived oligodendrocyte precursor cells (NSCs-OPCs) [131]. Recently, stimulation with highly 
concerted sub-microsecond EF pulses was shown to elicit coordinated motion of amino acid residues 
within human PDZ domain of model protein crystals as evidenced by time-resolved X-ray 
crystallography [238]. These motions are similar to the local and allosteric conformational changes 
that occur naturally during ligand binding of protein active sites to cell surface receptors.  
 
Such EF stimulated protein mechanics can trigger structural changes within cytoskeletal and 
intracellular proteins thereby impacting cellular functionality. Altogether, the reliability and agility of 
feedback to intracellular signaling can be regulated by modifying cytoskeletal pre-stress, which 
governs tension in cytoskeletal filaments including actin stress fibers and intermediate filaments that 
extend over long stretches in the cytoplasm. Correspondingly, the electrical forces on the nucleus, 
can lead to alterations in the structure, folding conformation or kinetics of explicit load-bearing 
molecules. It can further promote changes in higher-order chromatin assembly, and thereby 
alter nuclear protein organization, gene transcription, DNA replication or RNAprocessing – all of 
which dictate cellular functions. 

4.4. Surface receptor redistribution 

Many cellular processes are triggered and controlled by ligand-receptor binding. The changes in 
receptor distribution could affect cellular responses by altering the kinetics or affinity of 
ligand-receptor interactions. These membrane proteins function as signal integrators, which can 
respond to extracellular ligands, intracellular signal transduction, and changes in transmembrane 
potential [228]. For instance, integrins and its associated linking proteins, namely vinculin, actinin, and 
talin, interact with cellular actin filaments to form focal-adhesion complexes (FACs), which are 
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essential for cell attachment and motility [217], [239]. By theoretical calculations, it was shown that 
low frequency EFs of physiological magnitude (100 mV/mm) exert mechanical forces of the order of 
10−15 N on model integrins, which is identical to that produced by sinusoidal fluid shear [240]. 
 
This led to the hypothesis that electric fields and fluid shear stresses share a common signal 
transduction mechanism involving integrin receptors, that can dictate stem cell adhesion and 
differentiation via mechanical forces. Also, α2β1 integrins have also been implicated in directed cell 
migration as a result of polarization and clustering by RhoA under the influence of applied EF [241]. 
Mechanistically, since the plasma membrane has high electrical resistance, both dc and low 
frequency oscillatory ES are likely to confine at the cell surface rather than penetrating inside the cell. 
As a result, a majority of ES induced biochemical signal transduction cascades are likely to originate 
at the cell surface via the redistribution of charged cell surface receptors (CSRs) [227]. 
  
The peptide units of protein molecule have several charged groups and structural units possessing 
electric dipole moments that are susceptible to various types of electrical perturbation. More so, the 
effect of intense EF experienced by these molecules is greatly enhanced if these molecules are 
embedded in the lipid bilayer, causing conformational changes leading to alteration in their affinity to 
ions [242]. 
 
The dynamics of CSR redistribution is usually dictated by the two competing phenomena, diffusion 
and lateral electromigration [243]. It is reported that the exposure to external EF of 100–3000 mV/mm 
strength induces relative electrophoretic movement of charged membrane proteins and lipids, 
resulting in the redistribution of these components on the cell exterior [244]. Specifically, application 
of low EF is widely known to upregulate epidermal growth factor receptor (EGFR) along with cathodal 
redistribution of EGFRs [245]. In addition to inducing an asymmetric distribution of EGFR, small EF 
also causes co-localization of membrane lipids and second-messenger signaling molecule ERK ½, 
leading to the activation of MAPK signaling cascade [110], [246]. However, the redistribution of CSR 
does not exactly tread the EF lines and depends considerably on the frequency of EF stimulation as 
well as the surface geometry of the cells [18]. It is also worthwhile to share the prediction of 
McLaughlin et al. [247] that a mobile, negatively charged CSR will shift towards the positive side of 
the cell only if its zeta potential is more negative than the zeta potential of the cell surface. If the zeta 
potential of CSR is less negative than the zeta potential of the cell surface, then the CSR will 
accumulate towards the negative pole of the cell by electro-osmotic fluid flow [247]. Apart from 
electrophoretic and electroosmotic driven redistribution, cytoskeletal reorganization is also 
responsible for EF-induced receptor redistribution [18]. In another example, EF-induced redistribution 
of the unliganded LDL-R (low density lipoprotein receptor) due to surface electrophoresis is clearly 
demonstrated by Webb and co-workers [248]. Thus, EF application can induce direct CSR activation 
and downstream signaling in the absence of extracellular ligands, suggesting a ligand-independent 
activation phenomenon by EF [244]. The capacity of EF both to cause ligand concentration gradients 
in the cell surroundings and to promote irregular CSR distribution on the plasma membrane indicate 
that these two cell signals communicate as a positive-feedback amplification loop. Reiterating, the 
maximum accumulation of CSRs at the leading edge would be triggered by the highest ligand 
concentrations, both regulated by the EF gradient [1]. Some possible interpretations for EF induced 
redistribution of CSRs include the movement or rotation of the cells in the field or by gross membrane 
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alteration or anisotropic membrane characteristics, and irregular shape of cell surface, relative to the 
electromigration path or due to the buildup of chemical gradients [142], [243]. 

4.5. ATP synthesis 
The membrane ATPases are understood to absorb defined quanta of electrical energy from 
oscillating EFs of specific frequency and magnitude. This signal can be used to regulate the activity of 
membrane proteins, a mechanism named as ’electroconformational coupling’[249]. When an 
applied EF reaches the mitochondria membrane, it would augment and accelerate ATP synthesis. 
Hence, any cellular process limited by energy availability would be enhanced by applied electrical 
current [250]. The synthesis of ATP in non-respiring sub-mitochondrial particles from rat liver, by 
exposure to high field strength electric pulses is an apt example to describe how electrical energy is 
transformed into the chemical bond energy of ATP, by the mitochondrial inner membrane [251]. In 
fact, ATPases of chloroplasts, thermophilic bacteria and mitochondria have also been activated to 
biosynthesize ATP from ADP and Pi by exposing to pulsed EF [252]. Both, direct electric currents 
(ranging from 10 to 1000 μA) as well as alternating EF amplitudes of 250–5000 V/mm (100 Hz) 
stimulated membrane bound ATP synthesis [253], [254]. 
 
It is based on the view that electrostimulation can guide migrating protons to reach the mitochondrial 
membrane bound H1-ATPases so as to generate ATP. Also, a high level of ATP was released from 
electro-stimulated cells, possibly through secretory vesicles by exocytosis or particular 
ATP-transporting systems, such as anion channels, or even through transient electrophoretic 
membrane damage [37]. The release of intracellular ATP via anion channels to the extracellular 
compartment was increased 50 fold in electro-stimulated HeLa cells. It is believed that the released 
ATP may exert mitogenic effects by purinergic receptor stimulation 
via autocrine and paracrinemechanisms [255], [256]. 
 
As it is well-known that the mitochondria, which incorporate a dual membrane structure, are central 
organelles of energy metabolism, the EF induced transmembrane potential across mitochondrial 
membranes can affect cellular metabolisms [17]. Presumably, many cell functions such as 
DNA/RNA/protein biosynthesis and enzymatic activities are stimulated or suppressed by weak 
oscillating electromagnetic fields [249]. Interestingly, electrostimulation can directly accentuate protein 
synthesis without effecting DNA metabolism due to the increased availability of free amino acids. This 
in turn is equally increased due to the stimulated amino acid transport. Similarly, the kinetics of both 
protein and DNA synthesis was significantly escalated at EF strength of 50 and 75 V, respectively, 
with a pulse rate of 100 pulses/sec, on cells located at the cathode. Conversely, the exposure of cells 
to EF intensities greater than 250 V appeared to inhibit both protein and DNA synthesis. Since the 
protein synthesis intensely depends on adequate ATP levels, increased ATP production due to 
electrostimulation is yet another significant factor responsible for this phenomenon [257]. 
 
Particularly, the relationship between ATP synthesis and actin cytoskeleton is one of the intriguing 
mechanisms by which the cells sense EF. It has been well reported that intracellular ATP is 
consumed for the conversion of monomeric G-actin to polymeric F-actin [258]. The EF (200 mV/mm) 
induced ATP depletion was implicated in the reorganization of actin cytoskeleton and inhibition of 
linker proteins in electrically stimulated hMSCs [259]. Therefore, from a clinical perspective, 
regenerative process consumes a lot of ATP as its involvement is critically important for the 
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functioning of virtually every cell and its synthesis and consumption are proven to be accelerated by 
means of EF stimulation. 
 

4.6. Heat shock proteins 
It has been generally hypothesized that the response of cells to EF mimics a generalized 
physiological stress response. Hence, it is believed that EFs basically function as stress inducers and 
induce cellular responses through the activation of stress proteins, such as heat shock 
proteins (HSPs) [260]. A plausible upregulation of the hsp70 gene is invoked in electrically stimulated 
cells. This hypothesis can be rationalized in that hsp70 is expressed not only by thermal shock, but 
also by many other stresses such as pressure, magnetic and shear stresses [261]. Experimental 
evidences also suggest the participation of heat shockproteins (hsp 27 and hsp 70) in the 
upregulation of some of the transcription factors that aids in osteogenic differentiation of 
hMSCs [154]. Even, a relationship was drawn between the electrical conditioning of cells and the 
extent of HSP70 promoter expression, with the latter varying as a function of the field strength, pulse 
duration of the stimulation, and exposure time [262]. 
 
By its very nature, EF exposures can elicit a heat shock-like response. Unlike heat shock, the effect 
of ES was not significant at the mRNA transcription level, but more pronounced at the protein level of 
HSP via the attenuation of proteasomal degradation [263]. In a study by Yanagida et al. EF 
stimulation caused a 3 to 6-times greater HSP70 expression than thermal heat shock-induced 
expression [261]. It was quantified that EMF induces the production of hsp70 protein at an energy 
density of 14 orders of magnitude below that of thermal heat shock [264]. Another important 
breakthrough is the discovery of an EM field-sensitive nucleotide sequence in the HSP70 promoter. 
The EF domain is present between 230 and 160 on the HSP70 promoter and consists of three 
nCTCTn recognition motifs/sequences[265]. The elimination of the 70 bp region of the HSP70 
promoter, with its three nCTCTn sequences, ceases the response to EF, but does not affect the 
response to heat shock [266]. Moreover, EF can influence HSPs not only in terms of gene/protein 
expression, but also their distribution inside cellular compartments [267]. Considering the 
effectiveness of ES in activating HSP70 promoter, neural differentiation was achieved by electrically 
stimulated NeuroD2 expression under the control of HSP70 promoter by Aizawa and team [268]. All 
these instances collectively suggest that exposure to EF induces the expression of HSPs, which can 
interact with a variety of transcription factors as well as intrinsic and extrinsic signaling pathways 
affecting self-renewal, proliferation and differentiation of stem cells. 
 

4.7. Reactive oxygen species 
Another important mechanism through which stem cells respond to EF is through reactive oxygen 
species (ROS) generation and its participation in important signaling pathways [269]. As ROS is 
predominantly generated by NADPH-oxidase in stem cells, it has been postulated that their activation 
and expression can in turn be modulated by physical cues [270]. It should be noted that cell response 
of different cell types is variable to the same biochemical signal, which can be attributed to their 
particular intracellular redox state [271]. Since every cell type differ in their antioxidative capacity, its 
sensitivity towards ROS will be distinctly different, which eventually determines the cell fate. 
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While largely known for its detrimental effects such as DNA damage, protein/lipid oxidation and 
apoptosis, there are growing literature evidences showing that moderate intracellular ROS in the stem 
cell population induces them to undergo differentiation [272]. In fact, controlled ROS generation at 
physiologically moderate levels can facilitate beneficial interaction with other signaling molecules 
involved in differentiation. The prerequisite of moderate ROS for the activation of MAPK pathways 
and the consequent signaling cascades of ERK1,2, JNK and p38 has been testified in a number of 
studies [270]. In fact, a consensus has emerged that hypoxia induced mild rise in ROS mediates 
proliferation and differentiation of MSCs and PSCs [273], [274]. The stimulation of skeletal 
muscle cells with physiologically relevant EF led to ROS generation through the discharge of 
extracellular ATP and incitement of P2Y1 receptors [269]. Furthermore, cardiac differentiation in 
electrically stimulated hESCs occurs through pathways associated with the transient increase in 
intracellular ROS level [4]. 
 
It is also understood that ROS and other free radical generation, as well as acidification develop at 
the anode–electrolyte interface, when higher EF intensity is applied in a physiological solution [244]. 
Altogether, it is assumed that elevated intracellular ROS level in response to EF exposure acts as a 
signal transducer, which possibly could initiate various differentiation programs [4]. 

4.8. Lipid rafts 

It is widely accepted that biological cells sense external EF through charged molecules, membrane 
proteins and receptors that polarize under the influence of DCEF [275]. The polarization of membrane 
proteins and ion channels were hypothesized to activate intracellular signaling pathways, that 
regulate cell migration. However, recent research has shown that glycolipids on the plasma 
membrane can redistribute and congregate into nanodomain structures by employing membrane 
lipids and proteins under an external EF [276]. These nanodomain structures known as lipid rafts are 
inert to nonionic surfactants and may be the principal sensors of EF within cells. Under an applied EF, 
the congregation of glycolipids by recruiting membrane lipids and proteins leads to an increase in the 
raft size, thereby reducing raft motility. The consequent polarization of the raft structures leads to 
directed cell migration. Recently, Lin et al. demonstrated a frequency dependent raft and cell 
migration under AC EF [277]. Using experimental and theoretical modeling approaches, their work 
confirmed that lipid rafts act as mobile nanodomain complexes that polarize and promote directed cell 
migration in AC EF by sequestering caveolin and integrins on the cell surface. The membrane rafts 
are also implicated in many biological phenomena such as wound healing, immune 
response, axonal outgrowths in neural cells and polarization of cell motility during chemotaxis [278]. 
 
5. Effects of electrical stimulation in vivo 
In the light of endogenous electric field mediated wound healing of the epithelial skin tissue, EF 
triggered cardiac pacing and rhythm, EF modulated bone homeostasis, nerve signal transmission 
and skeletal muscle contractility, exogenous EF has been applied as a biomimicry tool for regulating 
tissue behavior and regeneration [199]. In this concluding section, a brief summary of the effects of 
exogenous or external electrical stimulation in various tissues is presented. The piezoelectricity of 
bone and its role in bone remodeling was first established by Fukada and Yasuda [151]. The 
presence of collagen fibrils in the framework of the bone tissue confers piezoelectricity, which was 
exploited in their pioneering work on the accelerated fracture reunion of rabbit femur by constant 
current stimulation for 3 weeks [279].  
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The results were rationalized on the basis of the reverse piezoelectric effect wherein an applied 
voltage causes compression of the bone tissue. Concerning electrical stimulation for bone healing, it 
has been reported that the application of electronegative potentials cause bone compression leading 
to bone formation, while electropositive potentials induce tension in the bone leading to bone 
resorption [280]. Subsequently, direct current electric stimulation has been tested in clinical trials for 
spinal fusion surgeries. Commercial implantable spinal fusion stimulators (SpF, Biomet Spine) with 
40–60 μA DC current output are available to aid in union of injured spines. In a randomized controlled 
clinical trial, 81% success rate of posterior spine fusion was recorded using ES in comparison to 54% 
in conventionally treated spine surgeries [281]. Recently, an electronic device was coupled to dental 
implants for providing biphasic electrical stimulation with a current density of 20 μA/cm2, which 
promoted osseointegration of dental implants with the mandibular bone in Canine models [282]. 
Likewise, the electrical stimulation of neural tissue is performed at specific sites in the brain in order 
to treat neurological and neuromuscular disorders. Particularly, deep brain stimulation (DBS) is 
employed in cases of extreme neurological conditions like Parkinson’s disease, tremors and seizures. 
The stimulation parameters vary with the anatomical region of the brain being stimulated and the 
treatment requirements. Generally, in DBS, the subthalamic nucleus (STN) and globus pallidus 
interna (GPi) parts of the brain are treated with typical parameters of 1–3.5 V, pulse duration of 
60–210 μs and frequency range of 130–185 Hz [283]. 
 
On similar lines, transcranial direct current stimulation (tDCS) is a non-invasive technique, which 
utilizes a constant current source of 0–4 mA to trigger the brain cortex to revive neuronal cell activity, 
following brain stroke [284]. As necessary for treatment of brain stroke, directed migration of 
transplanted human neural stems cells (hNSCs) in rat brain was achieved by a programmed 
intermittent EF of 0–300 mV/mm [285]. Recently, a new method for stimulating selective regions of 
the brain without affecting neuronal activityin the vicinity was developed by applying temporally 
interfering EFs [286]. Further, electroacupuncture was used to stimulate rat and human brains at 
specific points, which led to the release of mesenchymal stem cells into the peripheral blood 
predominantly from adipose tissue [287]. It is currently being tested pre-clinically and clinically for 
stroke rehabilitation and seizures by functional electrical stimulation exposure [107]. Another potential 
application of neural electrical stimulation is the function of a pain-killer or analgesic during specific 
surgical procedures. Transcutaneous electrical nerve stimulation (TENS) is the transmission of 
electric current to superficial nerves via the skin to function as an anesthetic during dental procedures 
and analgesic against acute or chronic maxillofacial pain after the procedure [288]. 
 
In similar way, the application of electrical stimulation for cardiovascular applications is also 
discussed. Cardiac pacing and defibrillation are among the most important heart disease treatment 
functions of electrical stimulation. Cardiac arrhythmias or irregular heartbeat, leading to speeding up 
or slowing down of the heart rate is treated by surgical implantation of a cardiac pacemaker in the 
chest close to the heart. Typical operating parameters of a cardiac pacemaker are electrical pulses of 
5 mA/cm2 current density, 2 ms duration and a frequency identical to the normal heart rate of 72 beats 
per minute (bpm) from a pulse generator of 5–8 V [289]. The electrodes are placed on the 
myocardium of atria or ventricles or both for dual pacing. In the case of cardiac pacing, an electric 
field of 100 mV/mm is sufficient for stimulating the heart muscle, while defibrillation uses a much 
higher field of 800 mV/mm for reviving the heart, following cardiac arrest due to ventricular fibrillation. 
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By functional electrical stimulation similar to cardiac pacing, rhythmic aortal contractions were 
recorded in mice with intensities proportional to the applied voltage and at native (1.7 Hz) as well as 
accelerated heart rates (5 Hz). 
 
These effects of EF were nullified in the presence of α-adrenergic 
antagonist drug, phentolamine [290]. Penultimately, chronic square wave pulse electrical stimulation 
of the lower leg skeletal muscles in Sprague-Dawley rats enhanced the density of blood capillaries by 
∼30% along with a concomitant increase in the expression of VEGF and Angiotensin II, testing the 
positive effect of controlled EF mediated angiogenesis [291]. Lastly, a clinical trial recorded an 
enhancement in angiogenesis as well as marked reduction in wound size, following degenerate wave 
pulse stimulation in a skin wound healing model in humans [292]. All the pre-clinical and clinical 
studies presented in this section and Table 4 are instances that exemplify the critical role of electrical 
stimulation in the tissue regeneration of bone, dental, neural, cardiac, blood vasculature, skin and 
wound healing. Also, a parallel may be drawn between the EF induced stem cell proliferation, 
migration and differentiation (section 4), in vitro and the electrical stimulation 
effects, in vivo(section 6). 
  
With these cues, it seems a certain possibility to apply electrically manipulated stem cells for tissue 
engineering and regenerative medicine with considerable success. A detailed investigation of the 
specific in vitro and in vivo mechanisms that operate under particular EF exposure conditions would 
help design stimulation protocols and standardize them for therapeutic applications. 
 
Table 4. Summary of electrical stimulation effects, in vivo. 

Electrical 
stimulation 

Stimulation 
parameters 

Animal mode and 
tissue type 

Outcome of the study Reference 

Direct current (DC) 
EF 

DC current for 3 
weeks 

Rabbit femur Accelerate reunion of fractured 
bones 

Yasuda 
et al., 
1953 [279] 

Biphasic electrical 
current (BEC) 
stimulation 

20 μA/cm2, 125 
μs and100 Hz for 
3–5 weeks 

Canine mandible Enhanced osseointegration of 
dental implant with the mandibular 
bone upon electrical stimulation of 
the tissue surrounding the implant 

Song et al., 
2009 [282] 

Direct current 
implantable spinal 
fusion stimulator 
(SpF by Biomet 
Spine) 

40–60 μA Lumbar spinal fusion in 
humans 

Clinical study revealed 81% fusion 
success rate with DC stimulation of 
injured posterior spines compared 
to 54% in conventionally treated 
subjects 

Kane WJ. 
1988 [281] 

Deep brain 
stimulation (DBS) 

1–3.5 V, 60–210 
μs, 130–185 Hz 

Subthalamic nucleus 
(STN) and globus 
pallidus interna (GPi) 
parts of the brain 

DBS is employed for treating 
movement disorders including 
Parkinson’s disease, tremor and 
other neurological disorders. 
Stimulation parameters vary with 
anatomical region and requirement. 

Kuncel 
et al., 
2004 [283] 

Functional EF 
stimulation (similar 
to seizures) 

30 Hz, 250 μs,, 
3 mA at 
10 min/day for 
14 days 

Cerebral artery occlusion 
models of 
Sprague-Dawley rats 

Neural cell precursor proliferation 
and expression of fibroblast growth 
factor (FGF) and epidermal growth 
factor (EGF) in the brains of rats 

Xiang et al., 
2014 [107] 
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Transcutaneous 
electric nerve 
stimulation (TENS) 

Pulsed AC or 
DC current from 
a 9 V source 

Electric signals are 
transferred to superficial 
nerves via the skin 
surface 

Electrical stimulation acts as 
analgesic for treatment of acute and 
chronic pain during dental 
procedures and pain in the 
maxillofacial region 

Kasat et al., 
2014 [288] 

Cardiac pacing and 
defibrillation 

5-8 V, 2 ms, 
5 mA/cm2, ∼72 
beats/min 

Atrial/ventricular or dual 
pacing 
(100–200 mV/mm) and 
sensing; 800 mV/mm for 
defibrillation 

Treatment of cardiac arrhythmia or 
irregular heart beat by stimulating 
atrial or ventricular myocardium; 
Defibrillation is the delivery of 
electric current following cardiac 
arrest due to ventricular fibrillation 

Malmivuo J 
et al., 
1995 [289] 

Pulsed electrical 
stimulation 

0.25–10 V, 2 ms, 
1.7 (normal heart 
rate) and 5 Hz 

Aorta of 
Sprague-Dawley rats 

Rhythmic aortal contractions were 
recorded in intensities proportional 
to applied voltage and at a native 
heart rate. These effects were 
suppressed by α-adrenergic 
antagonist drug, phentolamine. 

Sahibzada 
et al., 
2015 [290] 

Square wave pulse 
stimulation 

3 V, 0.3 ms, 
10 Hz at 8 h/day 
for 1 week 

Lower leg muscle tissues 
of Sprague-Dawley rats 

Chronic stimulation for 1 week led 
to 15–30% increase in the density 
of blood capillaries coupled with 
high VEGF and Angiotensin II in 
the stimulated muscle tissues. 

Amaral 
et al., 
2001 [291] 

Degenerate wave 
electrical stimulation 

4 μA, 60 ms, 
20–40 V, 
60 Hz at time 
points over 3 
weeks 

5 mm punch biopsies in 
the inner upper arm of 
humans 

Electrical stimulation induced 
angiogenesis (VEGF) and 
decreased wound size in acute 
wound healing model of human 
skin 

Ud-Din 
et al., 
2015 [292] 

Intermittent EF 0-300 mV/mm 
for 10 h per day 

Rat brain post 
transplantation of hNSCs 

EF directed migration of 
transplanted hNSCs in the rat brain 

Feng et al., 
2017 [285] 

Temporally 
interfering EF 

10 Hz from 2.01 
to 2 kHz 
interfering 
frequencies 

Neurons in the 
hippocampus regions of 
mice brain 

Selective firing of hippocampal 
neurons without affecting cortical 
neurons in the vicinity 

Grossman 
et al., 
2017 [286] 

6. Conclusions 
In summary, the present review uncovers a valuable glimpse into an unexplored domain of stem 
cell manipulation via electrical cues. While discussing the EF stimulation on stem cell response, the 
influence on other cell types are also mentioned. As far as the biophysical mechanisms are 
concerned, it has been largely emphasized that a combination of multiple signal transduction 
pathways, cytoskeletal reorganization and actin distribution and surface receptor redistribution 
operate under exogenous EF. Also, the up/downregulation of Ca+2transients, ATP synthesis, heat 
shock proteins and reactive oxygen species can mediate EF modulated stem cell response. An 
integrated approach to develop a qualitative and quantitative understanding of the stem cell 
differentiation through different lineages under the influence of electrical stimulation, remains to be 
explored in future. 
Both endogenously generated and exogenously applied EF have pivotal role in evoking stem cell 
response and it represents a remarkable tool for translational applications in bone/cardiac/neural 
tissue engineering and regeneration. However, proper identification and understanding of the critical 
field parameters that produce desired biological effects in stem cells is of prime importance in 
establishing safe and therapeutically relevant levels of EF exposure. The existing literature suggest 
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that the modulation of stem cell proliferation, migration and differentiation can be achieved by 
mimicking endogenous bioelectric fields in terms of the mode of stimulation (direct, pulsed, combined 
electromagnetic field etc.), the EF pattern, intensity and/or duration of a specific signal. However, 
several key questions related to defining the specific mechanisms of stem cell activation by external 
electrical stimuli, remain to be answered in order to facilitate the translation of these findings in basic 
research to clinical applications. More importantly, significant lessons are to be learnt by correlating 
the EF parameters and level of tissue/substrate conductivity required to trigger differentiation of 
choice, if these variants function in harmony to govern stem cell behavior. Here, the synergistic 
interaction among all the parameters/factors leading to cell functionality modulation is to be firmly 
established in future. Finally, this review emphasizes the clinical therapeutic potential of 
electromagnetic stimulation for bone healing, deep brain stimulation, cardiac pacing and defibrillation. 
Taken together, the bench to bed translation of the concept of ‘EF stimulation of stem cell niche’ in 
the context of tissue engineering and regenerative medicine is another aspect that needs further 
investigation. 
 
Although a multitude of in vitrostudies together with considerable preclinical studies are being 
reported in literature and discussed in this review, translational research would require more 
pre-clinical studies followed by thoughtful clinical trials [293], [294]. 
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Appendix. List of abbreviations 
EF 
electric field 

DCEF 
direct current electric field 

PEF 
pulsed electric field 

AC EF 
alternating electric field 

CC 
capacitive coupling 

IC 
inductive coupling 

PEMF 
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pulsed electromagnetic field 

ES 
electrical stimulation 

t-DCS 
transcranial direct current stimulation 

TENS 
transcutaneous electrical nerve stimulation 

PPy 
polypyrrole 

PANI 
polyaniline 

PT 
polythiophene 

SS 
stainless steel 

ITO 
Indium tin oxide 

CNTs 
carbon nanotubes 

hMSCs 
human mesenchymal stem cells 
NSCs 
neural stem cells 

hESCs 
human embryonic stem cells 

hiPSCs 
human induced pluripotent stem cells 

hASCs 
human adipose tissue-derived stem cells 

TMP 
transmembrane potential 

FGF 
fibroblast growth factor 
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EGF 
epidermal growth factor 

EGFR 
epidermal growth factor receptor 

IGF 
insulin-like growth factor 

VEGF 
vascular endothelial growth factor 

CaM 
calcium calmodulin 

NOS 
nitric oxide synthase 

cGMP 
cyclic guanosine monophosphate 

Erk 
extracellular signal regulated kinase 

CREB 
cAMP response element binding protein 

MAPK 
mitogen activated protein kinase 

FAK 
focal adhesion kinase 

JNK 
c-jun N-terminal kinase 

PTEN 
phosphate and tensin homolog 

EBs 
embryoid bodies 

GNPs 
gold nanoparticles 

ROS 
reactive oxygen species 

CSRs 



cell surface receptors 

ER 
endoplasmic reticulum 

VGCCs 
voltage gated calcium channels 

SACCs 
stretch activated calcium channels 

NCX 
Na + -Ca2+ exchanger 

GPCR 
G-protein coupled receptor 

IP3 
inositol 1,4,3-triphosphate 

[Ca2+]i 
intracellular calcium 

ATP 
adenosine triphosphate 

HSPs 
heat shock protein 
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